
mikroBASIC

Develop your applications quickly and easily with the world's
most intuitive Basic compiler for PIC Microcontrollers (families
PIC12, PIC16, and PIC18).

Highly sophisticated IDE provides the power you need with the
simplicity of a Windows based point-and-click environment.

With useful implemented tools, many practical code examples,
broad set of built-in routines, and a comprehensive Help,
mikroBasic makes a fast and reliable tool, which can satisfy
needs of experienced engineers and beginners alike.

Basic Compiler for Microchip PIC microcontrollers

MikroElektronika
Development tools - Books - Compilers
w w w . m i k r o e l e k t r o n i k a . c o . y u

Us
er
’s
 m

an
ua
l

making it simple...

MikroElektronika: Development tools - Books - Compilers

Table of Contents

CHAPTER 1 mikroBasic IDE

CHAPTER 2 mikroBasic Reference

CHAPTER 3 Built-In and Library Routines

mikroBASIC User’s manual

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

CHAPTER 1: mikroBasic IDE 1

Quick Overview 1
Code Editor 3

Basic Editor Features 3
Advanced Editor Features 4

Code Explorer 6
Creating First Project 7
Projects 13

Managing Source Files 14
Compile and Link Source Code 16

Debugger 17
Error Window 19
Assembly View 20
Statistics 21
Integrated Tools 24
Keyboard Shortcuts 26

CHAPTER 2: mikroBasic Reference 28

Identifiers 29
Keywords 30
Data Types 31

Array 32
Strings 34

Numerals and Character Strings 35
Constants 36
Array Constants 38
Symbols 40
Variables 41
Comments 45
Expressions 46
Declaration and Statements 48
Directives 50

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

ii
page

Procedures And Functions 52
Modules 57
Scope (Identifier Visibility) 60
Program Organization 62
Type Conversion 64
Assignment And Implicit Conversion 67
Implicit Conversion And Legal Expressions 71
Operators 75

Arithmetic Operators 78
Boolean Operators 81
Logical (Bitwise) Operators 82
Relation (Comparison) Operators 86

Conditional Statements 89
Labels and Goto 89
Case Statement 90
If Statement 92

Loops 94
For Statement 95
Repeat Statement 97
While Statement 98

ASM Statement 99
PIC MCU Specific 100
mikroBasic Specific 101
Compiler Error Messages 103

CHAPTER 3: Built-In and Library Routines 106

Built-In Routines 107
Library Routines 109

1-Wire Library 110
ADC Library 113
CAN Library 115
CANSPI Library 127
Compact Flash Library 136
EEPROM Library 144
I2C Library 145

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

iii

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

LCD Library 149
LCD8 Library (8-bit interface) 154
Graphic LCD Library 158
PWM Library 163
RS485 Library 165
SPI Library 171
USART Library 176
Software I2C 179
Software SPI 181
Software UART 183
Flash Memory 185
Manchester Code 188
Numeric Formatting Routines 194
Trigonometry Library 196
Sound Library 198
Utilities 200

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

iv
page

DISCLAIMER:
mikroBASIC compiler and this manual are owned by MikroElektronika and are protected by
copyright law and international copyright treaty. Therefore, you should treat this manual like
any other copyrighted material (e.g., a book). The manual and the compiler may not be
copied, partially or as a whole without the written consent from the MikroEelktronika. The
PDF-edition of the manual can be printed for private or local use, but not for distribution.
Modifying the manual or the compiler is strictly prohibited.

HIGH RISK ACTIVITIES
The mikroBASIC compiler is not fault-tolerant and is not designed, manufactured or intended
for use or resale as on-line control equipment in hazardous environments requiring fail-safe
performance, such as in the operation of nuclear facilities, aircraft navigation or communica-
tion systems, air traffic control, direct life support machines, or weapons systems, in which
the failure of the Software could lead directly to death, personal injury, or severe physical or
environmental damage ("High Risk Activities"). MikroElektronika and its suppliers specifically
disclaim any express or implied warranty of fitness for High Risk Activities.

LICENSE AGREEMENT:
By using the mikroBASIC compiler, you agree to the terms of this agreement. Only one per-
son may use licensed version of mikroBASIC compiler at a time.
Copyright © MikroElektronika 2003 - 2004.

This manual covers mikroBASIC 1.16 and the related topics. New versions may contain
changes without prior notice.

COMPILER BUG REPORTS:
The compiler has been carefully tested and debugged. It is, however, not possible to
guarantee a 100 % error free product. If you would like to report a bug, please contact us at
the address office@mikroelektronika.co.yu. Please include next information in your bug
report:

- Your operating system
- Version of mikroBASIC
- Code sample
- Description of a bug

CONTACT US:
MikroElektronika magazine
Voice: +381 11 362 04 22, + 381 11 684 919
Fax: +381 11 362 04 22
Web: www.MikroElektronika.co.yu
E-mail: office@MikroElektronika .co.yu

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

v

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

To readers note

PIC, PICmicro and MPLAB is a Registered trademark of Microchip company. Windows is a
Registered trademark of Microsoft Corp. All other trade and/or services marks are the
property of their respective owners.

CHAPTER

MikroElektronika: Development tools - Books - Compilers

1

mikroBasic IDE

mikroBasic is a Windows-based Integrated Development Environment, and is
much more than just Basic compiler for PIC MCUs. With mikroBasic, you can:

1. Create Basic source code using the built-in Code Editor
2. Compile and link your source code
3. Inspect program flow and debug executable logic with Debugger
4. Monitor variables in Watch Window
5. Get error reports
6. Get detailed statistics (how compiled code utilizes PIC MCU memory, hex

map, charts and more...)

QUICK OVERVIEW

Code Editor features adjustable Syntax Highlighting, Code Assistant, Parameters
Assistant, Auto Correct for common typos, and Code Templates.

Code browser, Keyboard shortcut browser, and Quick Help browser are at your dis-
posal for easier project management.

Error Window displays all errors detected during compiling and linking.

Watch Window enables you to monitor variables, registers and PIC MCU
memory.

New Project Wizard is fast, reliable, and easy way to create a project.

Source-level Debugger lets you debug executable logic step-by-step by watching
program flow.

Help files are syntax and context sensitive.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

2

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Code
Explorer

Error
Window

Watch
Window

Code
Editor

Breakpoints
Dialog

Code
Assistant

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

3
page

General code editing is same as working with any standard text-editor, including
familiar Copy, Paste, and Undo actions, common for Windows environment.

Advanced code editing includes:

- Adjustable Syntax Highlighting
- Code Assistant, Parameters Assistant, Code Templates
- Auto Correct for common typos

You can configure Syntax Highlighting, Code Assistant and Auto Correct from
Editor Settings dialog. To access this window, click Tools > Options from drop-
down menu, or click Tools icon in Settings toolbar.

CODE EDITOR

Basic Editor Features

Tools Icon.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

4

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Code Assistant [CTRL+SPACE]
If you type first few letter of a word and then press CTRL+SPACE, all valid iden-
tifiers matching the letters you typed will be prompted to you in a floating panel
(see the image). Now you can keep typing to narrow the choice, or you can select
one from the list using keyboard arrows and Enter.

Parameter Assistant [CTRL+SHIFT+SPACE]
Parameter Assistant will be automatically invoked when you open a parenthesis
"(" or press CTRL+SHIFT+SPACE. If name of valid function or procedure pre-
cedes the parenthesis, then the expected parameters will be prompted to you in a
floating panel. As you type the actual parameter, next expected parameter will
become bold.

Code Template [CTR+J]
You can insert Code Template by typing the name of the template (for instance,
proc), then press CTRL+J, and Editor will automatically generate code. Or you
can click button from Code toolbar and select template from the list.

You can add your own templates to the list. Just select Tools > Options from drop-
down menu, or click Tools Icon from Settings Toolbar, and then select Auto
Complete Tab. Here you can enter the appropriate keyword, description, and code
of your template.

Auto Correct
Auto Correct corrects common typing mistakes. To access the list of recognized
typos, select Tools > Options from drop-down menu, or click Tools Icon from
Settings Toolbar, and then select Auto Correct Tab. You can also add your own
preferences to the list.

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

Advanced Editor Features

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Also, Code Editor has feature to comment or uncomment selected block of code
by simple click of a mouse, using icons and from Code Toolbar.

Bookmarks
Bookmarks make navigation through large code easier.

CTRL+<number> : Goto bookmark
CTRL+SHIFT+<number> : Set bookmark

Goto Line
Goto Line option makes navigation through large code easier. Select Search >
Goto Line from drop-down menu, or use the shortcut CTRL+G.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

5
page

Comment /
Uncomment Icon.

Code Explorer is placed to the left of the main window by default, and gives clear
view of every declared item in the source code. You can jump to declaration of
any item by right clicking it, or by clicking the Find Declaration icon. To expand
or collapse treeview in Code Explorer, use the Collapse/Expand All icon.

Also, two more tab windows are available in Code Explorer: Keyboard Tab lists
all keyboard shortcuts, and QHelp Tab lists all the available built-in and library
functions and procedures, for a quick reference. Double-clicking a routine in
QHelp Tab opens an appropriate Help chapter.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

6

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

CODE EXPLORER

Find Declaration
Icon.

Collapse/Expand
All Icon.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

7
page

Step 1
From a drop-down menu, select: Project > New Project, or click New Project icon

Step 2
Fill the New Project Wizard dialog with correct values to set up your new project.
- Select a device for your project from the drop-down menu
- Set configuration bits (Device Flags) by clicking Default push-button.
- Select Device Clock by entering appropriate value in edit box.
- Enter a name for your new project
- Enter project description edit box for closer information about your project
- Enter project path

CREATING FIRST PROJECT

New Project
Icon.

After you have set up your project, select OK push button in New Project Wizard
dialog box. mikroBasic will create project for you and automatically open the pro-
gram file in code editor. Now we can write the source code.

Step 3
After you have successfully created an empty project with New Project Wizard,
Code Editor will display an empty program file, named same as your project.

Now we can write the code for this simple example. We want to make LED diode
blink once per second. Assuming we have the configuration given in the following
figure, LED diodes are connected to PIC16F877 PORTB pins. (it can be any other
PIC that has PORTB)

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

8

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

In this configuration, LED will emit light when voltage on pin is high (5V), and
will be off when voltage on pin is low (0V). We have to designate PORTB pins as
output, and change its value every second. Listing of program is below

program My_LED

main:

TRISB = 0 ' configure pins of PORTB as output
eloop:

PORTB = $FF ' turn on diodes on PORTB
delay_ms(1000) ' wait 1 second
PORTB = 0 ' turn of diodes on PORTB
delay_ms(1000) ' wait 1 second

goto eloop ' stay in a loop

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

9
page

4MHz

LB7

LB6

LB5

LB4

LB3

LB2

LB1

LB0

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

330R

330R

330R

330R

330R

330R

330R

330R

1
0

K

R
e

s
e

t

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

10

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

Step 4
Before compiling, it is recommended to save the project (menu choice File>Save
All). Now you can compile your code by selecting menu Run > Compile,
or by clicking the Compile icon.

mikroBasic has generated hex file which can be used to program PIC MCU. But
before that, let's check our program with the Debugger. Also mikroBasic generates
list and assembly files.

Step 5
After successful compiling, we can use mikroBasic Debugger to check our pro-
gram behavior before we feed it to the device (PIC16F877 or other). For a simple
program such as this, simulation is not really necessary, but it is a requirement for
more complex programs.

To start the Debugger, select Run > Debug, or click the Debug icon, or simply hit
F9.

Upon starting the Debugger, Watch Window appears, and the active line in Code
Editor marks the instruction to be executed next. We will set the breakpoint at line
7 by positioning the cursor to that line and toggling the breakpoint (Run > Toggle
Breakpoint or F5). See the following image.

Compile Icon.

Debug Icon.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

We will use the Step Over option (Run > Step Over or F8) to execute the current
program line. Now, you can see the changes in variables, SFR registers, etc, in the
Watch Window – items that have changed are marked red, as shown in the image
below.

We could have used Run/Pause (F6) option to execute all the instructions between
the active line and the breakpoint (Run > Run/Pause Debugger).

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

11
page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

12

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

Step 6
Now we can use hex file and feed it to the device (PIC16F877 or other). In order
to do so hex file must be loaded in programmer (PIC Flash by mikroElektronika
or any other).

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

13
page

Each application, or project, consists of a single project file and one or more unit
files. You can compile source files only if they are part of the project. First and
essential step is creating a project.

We will use New Project Wizard to create our new project.

Select Project > New Project from drop-down menu and follow the dialog:

(select PIC MCU device, device clock, setup configuration bits, set project name,
location and description)

Later, if you want to change some project settings, select Project > Edit from drop-
down menu. To save your project , select Project > Save All from drop-down
menu. To save your project under different name, select Project > Save Project As
from drop-down menu. To open a project, select Project > Open, or Project >
Reopen from drop-down menu.

When you create new project, mikroBasic automatically creates an empty main
unit file in which you'll write your source code.

PROJECTS

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

14

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

Source files created in mikroBasic have the extension pbas. By default, main mod-
ule file is named same as the project.

Location of the main unit source file and other project information are stored in
project file with extension pbp.

Main module file is created simultaneously with the project and is named same as
the project, with extension pbas. You should not change the name of this file as
mikroBasic might not be able to compile it. Project file and main module file must
be saved in the same folder.

Select File > New module from drop-down menu, or press CTRL+N, or click the
New File icon. A new tab will open, named "Untitled1". This is your new module
file. Select File > Save As from drop-down menu to name it the way you want.

Keyword include instructs compiler which unit beside main module should be
compiled. Module other than main must be in same folder with project file or in
folder specified by search path. Search path can be configured by selecting menu
choice Options > Settings from drop-down menu and then tab window Advanced.

Managing Source Files

Creating Main Module File

Creating a New Unit File

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

15
page

Select File > Open from drop-down menu, or press CTRL+O, or click the Open
File icon. The Select Input File dialog opens. In the dialog, browse to the location
of the file you want to open and select it. Click the Open button.
The selected file is displayed in its own tab. If the selected file is already open, its
current Editor tab will become active.

Make sure that window containing the file you want to print is the active window.
Select File > Print from drop-down menu, or press CTRL+P, or click the Print
icon. In the Print Preview Window, set the desired layout of the document and
click the OK button. The file will be printed on the selected printer.

Make sure that window containing the file you want to save is the active window.
Select File > Save from drop-down menu, or press CTRL+S, or click the Save
icon. The file will be saved under the name on its window.

Make sure that window containing the file you want to save is the active window.
Select File > Save As from drop-down menu, or press SHIFT+CTRL+S. The New
File Name dialog will be displayed.
In the dialog, browse to the folder where you want to save the file.
In the File Name field, modify the name of the file you want to save.

Click the Save button. Make sure that tab containing the file you want to close is
the active tab. Select File > Close from drop-down menu, or right click the tab of
the file you want to close in Code Editor. If the file has been changed since it was
last saved, you will be prompted to save your changes.

Printing an Open File

Saving File

Opening an Existing File

Saving File Under a Different Name

Closing a File

Open File Icon.

Print File Icon.

Save File Icon.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

16

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC

When you have created the project and written the source code, you will want to
compile it. Select Run > Compile from drop-down menu, or click Compiler Icon
from Compiler Toolbar.

Progress bar will appear to inform you about the status of compiling. If no errors
are encountered, mikroBasic will produce hex file, assembly file, and list for the
appropriate PIC MCU.

Compile Source Code

Compile Icon.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

17
page

Source-level Debugger is integral component of mikroBasic development environ-
ment. It is designed to simulate operations of Microchip Technology's PIC MCU’s
and to assist users in debugging Basic software written for these devices.

Debugger simulates program flow and execution of instruction lines, but does not
fully emulate PIC device behavior: it does not update timers, interrupt flags, etc.
Jump to interrupt is performed by clicking the Interrupt icon .

After you have successfully compiled your project, you can run Debugger by
selecting Run > Debug from drop-down menu, or by clicking Debug Icon .
Starting the Debugger makes more options available: Step Into, Step Over, Run to
Cursor etc. Line that is to be executed is color highlighted (blue).

Debug [F9]
Starts Debugger.

Step Into [F7]
Execute the current Basic instruction (single or multiple cycle instructions) and
then halt. After execution, all windows are updated. If the instruction is a proce-
dure or function call, execute it enters routine and halt at the first following
instruction after the call.

Step Over [F8]
Execute the current Basic instruction (single or multiple cycle instructions) then
halt. If the instruction is a procedure or function call, execute the called routine
and halt at the instruction following the call.

Run to cursor [F4]
Executes all instructions between the current instruction and the cursor position.

Toggle Breakpoints [F5]
Toggle breakpoint at current cursor position.

DEBUGGER

Debug Icon.

Debug Icon.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

18

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Run/Pause Debugger [F6]
Run or pause Debugger.

Run > View Breakpoints
Invoke breakpoints window, with list of breakpoints. Double clicking item in win-
dow list locates breakpoint.

Watch Window
Watch Window allows you to monitor program items while running your program.
It displays variables and special function registers of PIC MCU, their addresses
and values. Values are updated as you go through the simulation. See the image
below.

Double clicking one of the items opens a window in which you can assign new
value to the selected variable or register.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

19
page

In case that errors were encountered during compiling, compiler will report them
and won't generate a hex file. Error Window will be prompted at the bottom of the
main window.

Error Window is located under message tab, and displays location and type of
errors compiler has encountered. Compiler also reports warnings, but these do not
affect generating hex code. Only errors can interefere with generation of hex.

Double clicking the message line in Error Window results in highlighting the line
of source code where the error took place.

ERROR WINDOW

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

20

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

After compiling your program in mikroBasic, you can click toolbar Assembly icon
or select Project > View Assembly from drop-down menu to review generated
assembly code in a new tab window. Assembly is human readable with symbolic
names. All physical addresses and other information can be found in Statistics or
in list file.

If program is not compiled and there is no assembly file, starting this option will
compile your code and then display assembly.

ASSEMBLY VIEW

Assembly Icon.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

21
page

After successful compiling, you can review statistics on your code. Select Project
> View Statistics from drop-down menu, or click the Statistics icon. There are five
tab windows:

Memory Usage Window
Provides overview of RAM and ROM memory usage in form of histogram.

Procedures (Graph) Window
Displays procedures and functions in form of histogram, according to their memo-
ry allotment.

STATISTICS

Statistics Icon.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

22

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Procedures (Locations) Window
Displays how procedures and functions are located in microcontroller’s memory.

Procedures (Details) Window
Displays complete call tree, along with details for each procedure and function:
size, start and end address, frequency in program, return type, etc.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

RAM Window
Summarizes all GPR and SFR registers and their addresses. Also displays symbol-
ic names of variables and their addresses.

ROM Window
Lists op-codes and their addresses in form of a human readable hex code.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

23
page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

24

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

USART Terminal
mikroBasic includes USART (Universal Synchronous Asynchronous Receiver
Transmitter) communication terminal for RS232 communication. You can launch
it from drop-down menu Tools > Terminal or by clicking the icon .

ASCII Chart
ASCII Chart is a handy tool, particularly useful when working with LCD display.
You can launch it from drop-down menu Tools > ASCII chart.

INTEGRATED TOOLS

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

7 Segment Display Decoder
7seg Display Decoder is a convenient visual panel which returns decimal/hex
value for any viable combination you would like to display on 7seg. Click on the
parts of 7 segment image to the left to get the desired value in the edit boxes. You
can launch it from drop-down menu Tools > 7 Segment Display.

EEPROM Editor
EEPROM Editor allows you to easily manage EEPROM of PIC microcontroller.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

25
page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

26

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Complete list of keyboard shortcuts is available from Code Explorer window, tab
Keyboard.

IDE Shortcuts

F1 Help
CTRL+N New Unit
CTRL+O Open
CTRL+F9 Compile
CTRL+F11 Code Explorer on/off
CTRL+SHIFT+F5 View breakpoints

Advanced Editor shortcuts

CTRL+SPACE Code Assistant
CTRL+SHIFT+SPACE Parameters Assistant
CTRL+D Find declaration
CTRL+G Goto line
CTRL+J Insert Code Template
CTRL+<number> Goto bookmark
CTRL+SHIFT+<number> Set bookmark
CTRL+SHIFT+I Indent selection
CTRL+SHIFT+U Unindent selection
CTRL+ALT+SELECT Select columns

Debugger Shortcuts

F4 Run to Cursor
F5 Toggle breakpoint
F6 Run/Pause Debugger
F7 Step into
F8 Step over
F9 Debug
CTRL+F2 Reset

KEYBOARD SHORTCUTS

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Basic Editor shortcuts

F3 Find, Find Next
CTRL+A Select All
CTRL+C Copy
CTRL+F Find
CTRL+P Print
CTRL+R Replace
CTRL+S Save unit
CTRL+SHIFT+S Save As
CTRL+V Paste
CTRL+X Cut
CTRL+Y Redo
CTRL+Z Undo

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

27
page

CHAPTER

MikroElektronika: Development tools - Books - Compilers

2

mikroBasic
Reference

"Why Basic?", you may wonder. Well, the answer is simple: it is legible, easy-to-
learn, procedural programming language, with sufficient power and flexibility
needed for programming microcontrollers. Whether you had any previous pro-
gramming experience, you will find that writing programs in mikroBasic is very
easy. This chapter will help you learn or recollect Basic syntax, along with the
specifics of programming PIC microcontrollers.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Identifiers are names used for referencing the stored values, such as variables and
constants. Every program, procedure, and function must be identified (hence the
term) by an identifier.

Valid identifier:
1. must begin with a letter of English alphabet or possibly the underscore (_)
2. can be followed by alphanumeric characters and the underscore (_)
3. may not contain special characters:
~ ! @ # $ % ^ & * () + ` - = { } [] : " ; ' < > ? , . / | \

mikroBasic is not case sensitive. First, FIRST, and fIrST are an equivalent identifi-
er.

Elements ignored by the compiler include spaces, new lines, and tabs. All these
elements are collectively known as the white space. White space serves only to
make the code more legible; it does not affect the actual compiling.

Several identifiers are reserved in mikroBasic - you cannot use them as your own
identifiers. Please refer to Kewords. Also, mikroBasic has several pre-defined
identifiers. Pre-defined identifiers are listed in the chapter Library Functions and
Procedures.

' Valid identifier examples

temperature_V1
Pressure
no_hit
dat
sum
vtext

' Some invalid identifier examples

7temp ' cannot begin with a numeral
%higher ' cannot contain special characters
xor ' cannot match reserved word
j23.07.04 ' cannot contain special characters

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

29
page

IDENTIFIERS

Rules

Note

Examples

The following keywords (reserved words) cannot be redefined or used as identi-
fiers.

In mikroBasic, all SFR (Special Function Registers) are defined as global vari-
ables and represent special reserved words that cannot be redefined. For example -
TMR0, PCL, STATUS, etc.

Also, mikroBasic has a number of predefined identifiers (refer to Library
Routines). These can be replaced by your own definitions, but that would impede
the functionality of mikroBasic.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

30

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

KEYWORDS

absolute abs
and array
asm begin
boolean case
char chr
clear const
div do
double else
end exit
for function
goto gosub
if in
int interrupt
is loop
mod new
next not
or print
procedure program
float read
select step
string switch
then to
module until
include dim
wend while
with xor

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Type determines the allowed range of values for variable, and which operations
may be performed on it. It also determines the amount of memory used for one
instance of that variable.

* char type can be treated as byte type in every aspect

Array represents an indexed collection of elements of the same type, often called
the base type. Base type can be any simple type.

String represents a sequence of characters. It is an array that holds characters and
the first element of string holds the number of characters (max number is 255).

Sign is important attribute of data types, and affects the way variable is treated by
the compiler.

Unsigned can hold only positive numbers:

byte 0 .. 255
word 0 .. 65535

Signed can hold both positive and negative numbers:

short -128 .. 127
integer -32768 .. 32767
longint -2147483648 .. 214748364

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

31
page

DATA TYPES

Simple

Sign

Structured

Type Size Range of values
byte 8-bit 0 .. 255
char* 8-bit 0 .. 255
word 16-bit 0 .. 65535
short 8-bit -128 .. 127
integer 16-bit -32768 .. 32767
longint 32-bit -2147483648 ..147483647

Array is a set of data stored in consecutive memory locations. Defining an array
and manipulating its elements is simple. Elements of array are always of same
data type (any simple).

dim days_of_the_week as byte[7]
dim months as byte[12]
dim AD_Conversion_result as word[10]

First declaration above generates 7 variables of byte type. These can be accessed
by array name followed by number in the square brackets [] (this number is also
known as index). Indexing is zero based, meaning that in our example, index
spans numbers from 0 to 6. Instead of byte, you can define array of any other sim-
ple type (word, short, integer or longint).

Note that:
dim something as integer[10]

occupies 20 RAM locations (bytes), not 10.

You can use any kind of operator with array elements - Arithmetic Operators,
Logical (Bitwise) Operators, and Relation (Comparison) Operators. Technically,
array element is treated as a simple type. Also, instead of a number, index can be
any expression with result type of byte. For example:

m[a + b] = 90
m[1] = m[2] + 67

m[1] = m[2] div m[3]

When you declare an array, mikroBasic allocates a certain amount of RAM for it.
Elements of array consume consecutive RAM locations; in case of array of bytes,
if the address of m[0] is 0x23, m[1] will be at 0x24, and so on.

Accessing these elements is almost as fast as accessing any variable of simple
type. Instead of byte you can define array of any other simple type (word, short,
integer or longint). Don't forget that you are restricted by the amount of free space
in PIC RAM memory.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

32

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Array

Array and
Operators

Array and
PIC

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

For example:

dim size as longint[10]

occupies 40 RAM locations (bytes).

program Array_test

dim m as byte[13]
dim j as byte[5]

j[0] = m[3] + 6
m[4] = m[2] mod 3
j[2] = not j[0]

if m[0] > 0 then
m[1] = 9

else
m[1] = 90

end if
end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

33
page

Example

After you have declared an array,
for example:

dim m [5]as byte

you can easily access its elements

m[0],m[1],m[2]....

m[0]

PIC MCU RAM

Array is just a specified set
of data in memory,

stored in consequent
locations

m[0]

m[0]m[0]m[1]

m[0]m[2]

m[0]m[3]

String represents a sequence of characters. String type is similar to array, but can
hold only characters.

dim M_name as string[16]

dim Start_message as string[6]

For each string declaration, compiler will reserve the appropriate amount of mem-
ory locations. For example, string M_name will take 16+1 locations; additional
memory location is reserved to contain the length of the string. If we assign string
literal to variable M_name, M_name = "mik", then:

M_name[0] will be 3 (contains length of the string)
M_name[1] will be 'm'
M_name[2] will be 'i'
M_name[3] will be 'k'

and all other locations will be undefined.

Assignment operator can be used with string variables:

dim M as string[20]
S as string[8]

main:
M = "port" ' Assign 'port' to M
S = "port1" ' Assign 'port1' to S

end.

mikroBasic includes a built-in function Length for working with strings:

sub function Length(dim text as string) as byte

It returns string length as byte, and is quite useful for handling characters within
string:

M = "mikroElektronika"
for i = 1 to Length(M)

LCD_Chr(1,i,M[i])
next i

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

34

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Strings

Strings and
assignment

Length

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Numeric constants can be represented in decimal, binary, or hexadecimal number
system.

In decimal notation, they are represented as a sequence of digits, without commas
or spaces, and can be prefixed with + or - operator to indicate the sign. Values
default to positive (67258 is equivalent to +67258).

The dollar-sign prefix or a 0x prefix indicates a hexadecimal numeral (for example
$8F or 0xC9).

The percent-sign indicates a binary numeral (for example %0101).

Example:

123 Decimal
$1fc Hex
0xb9 Hex
%101 Binary

Character string, also called a string literal or a string constant, consists of a quot-
ed string. Separators can be used only within quoted strings. A quoted string is a
sequence of up to 255 characters from the extended ASCII character set, written in
one line and enclosed by apostrophes.

Quoted string with nothing between the apostrophes is a null string. Apostrophe
itself cannot be used as part of the string. For example:

"mikroBasic" ' mikroBasic
"" ' null string
" " ' a space

Length of character string is the number of characters it consists of. Character
string of length 1 is compatible with the char type. You can assign string literal to
a string variable or to array of char.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

35
page

NUMERALS AND CHARACTER STRINGS

Numerals

Character Strings

Constant is data whose value cannot be changed during the runtime. Every con-
stant is declared under unique name which must be a valid identifier. It is a good
practice to write constant names in uppercase.

In mikroBasic, constants have to be of simple data type (no arrays or strings are
allowed).

Example of constant declaration:

const MAXVALUE = 237

Constants can be used in any legal expression, but they cannot be assigned a new
value. Therefore, they cannot appear on the left side of the assignment operator.

If you frequently use the same value throughout the program and its value is fixed,
you should declare it a constant (for example, maximum number allowed is 1000).
This is a good practice since the value can be changed simply by modifying the
declaration, instead of going trough the entire program and adjusting each instance
manually. As simple as this:

const MAX = 1000

It is important to understand why constants should be used and how this affects
the MCU. Using a constant in a program consumes no RAM memory. This is very
important due to the limited RAM space (PIC16F877 has 368 locations/bytes).

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

36

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

CONSTANTS

Note

Constants
and PIC

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

const MaxAllowed = 234
const K_a = -32766
const Max = 1000
const Min = 0

ADC_Res = ADC_Read(2)
if ADC_Res > Max then

portb = 1
else

portb = Min

end if

const 7time = 123
' Wrong constant name, it must be
' a valid identifier

const Max = 1123456
' Assigned value exceeds the allowed
' range for integer

Max = A
Max = 123
' You cannot assign new value to a constant,

' compiler will report an error

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

37
page

Examples

Examples of
invalid use

Array constant is a set of data stored in ROM memory. Elements of array are
always of the same data type (any simple).

const CTEXT as char[6] = "trial1"
const CMONTHS as byte[12] = (1,2,3,4,5,6,7,8,9,10,11,12)
const MATCHVALUE as word[8] = (123,4566,56000,324,54,7878,876,0)

To declare an array constant holding numerals, enclose the values of the array's
elements, separated by commas, in parentheses. For arrays of char type, use a
string literal (text enclosed by quotes), as shown in the example above. Number of
values in parentheses, i.e. a number of characters in quotes, must match the speci-
fied value in the square brackets.

Accessing elements of array constant is simple, but be careful not to exceed the
array range (if index is greater than array size, program won't work correctly).
Indexing is zero based, so if you declare:

const width as byte[3] = (23,5,67)

then width[0] is the first element and index needs to be less or equal than 2.

Special case is array constant of char which holds the size of the array in the first
location. Array constant of char is limited to 255 characters.

You can use any kind of operator with array constant elements. Technically, array
constant element is treated as a simple constant. Also, instead of a number, index
can be any expression. But, you cannot assign new value to array constant ele-
ment. For example:

m = CMONTHS[a + b]
m = CMONTHS[2] + 67
vv = vv div CMONTHS[3]

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

38

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

ARRAY CONSTANTS

Note

Array and
Operators

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Also, it is possible for array constants of type char to copy whole array to variable
of same type by simple assignment. For example:

const CTXT as char[4] = "dota"
dim txt as char[4]
...
txt = CTXT ' this is legitimate

Elements of array constant are located in R0M. PIC16 family restricts array con-
stants to 255 elements of byte type, while PIC18 family is limited only by ROM
size.

Instead of byte, you can define array of any other simple type (word, short,
integer or longint). Don't forget that you are restricted by the amount of PIC
ROM memory.

For example:

const foo as longint[5] = (36732, 32442, 19901, 82, 27332724)

program Array_test

const m as byte[3] = (0,1,2)
dim j as byte[5]
main:

j[0] = m[3] + 6
j[4] = m[2] mod 3
j[2] = not j[0]

if m[0] > 0 then
j[1] = 9

else
j[1] = 90

end if
end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

39
page

Array
Constants
and PIC

Example

Symbol makes possible to replace expression with a single identifier alias. Use of
symbols increases the reusability and flexibility of code.

BASIC syntax restricts you to single line expressions, allowing shortcuts for con-
stants, simple statements, function calls, etc. Scope of symbol identifier is a whole
source file in which it is declared.

Symbol is declared as:

symbol alias = single_line_expression

where alias must be a valid identifier which you will be using throughout the
code.

Using a symbol in a program technically consumes no RAM memory - compiler
simply replaces each instance of a symbol with the appropriate code from the dec-
laration.

symbol MaxAllowed = 234 ' symbol as alias for numeral
symbol PORT = PORTC ' symbol as alias for SFR
symbol DELAY1S = delay_ms(1000) ' symbol as alias for proc. call

if teA > MaxAllowed then
teA = teA - 100

end if
PORT.1 = 0
DELAY1S

...

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

40

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

SYMBOLS

Symbols
and PIC

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

41
page

Variable is data whose value can be changed during the runtime. Every variable is
declared under unique name which must be a valid identifier. This name is used
for accessing the memory location occupied by the variable.

Variable can be seen as a container for data and because it is typed, it instructs the
compiler how to interpret the data it holds. For more details refer to Data Types
and Type Conversion.

For more information on variables' scope refer to the chapter Scope (Variable
Visibility).

In mikroBasic, variable needs to be declared before it can be used. Specifying a
data type for each variable is mandatory. Basic syntax for variable declaration is:

dim variable as type

where variabe is any valid identifier, and type can be any valid data type.

For example:

dim A as byte ' declare variable tA of byte type

dim BB as word ' declare variable tB of word type

Every declared variable consumes part of MCU RAM memory. Data type of vari-
able determines not only the allowed range of values, but also the space variable
occupies in RAM memory. Bear in mind that operations using different types of
variables take different time to be completed. For example:

Variable A (byte) occupies 1 byte (8 bit) of RAM memory, while variable BB
(word) occupies 2 bytes (16 bit) of RAM memory.

Therefore, A = A + A is faster to execute than BB = BB + BB.

VARIABLES

Variables
and PIC

mikroBasic recycles local variable memory space - local variables declared in dif-
ferent functions and procedures share same memory space, if possible.

Variable declaration has to be properly placed to have a correct meaning. Variables
can be declared in a program block or implementation section of a module.
Variable declaration must be placed ahead of the keyword begin. You can also
declare variables in function or procedure block. Refer to Program Organization,
and see the following example.

There is no need to declare PIC SFR (Special Function Registers), as they are
already declared as global variables of byte type - for example: TMR0, PCL, STA-
TUS, PORTA, TRISA, etc. These variables may be used anywhere within the
code.

For closer information on how to use variables and build valid expressions refer to
the chapter Operators.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

42

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Additional
info

MikroElektronika: Development tools - Books - Compilers

Note

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

program TRIAL

include "other.pbas"

' You can declare variables in the program block

dim tA as integer
dim tD as integer
dim tF as integer
dim tR as word
dim tT as word
dim tY as word

main:
tA = tD and tF

' STATUS and TMR0 are PIC registers
tR = STATUS and $03
TMR0 = 45

end.

...

module other

' You can declare variables at the
' beginning of a module

dim Sss as longint
dim Ddd as longint
...
end.

sub function Sum(dim R as byte) as byte
' You can also declare variables in
' function or procedure block.

dim B as char
dim K as byte

...
end sub

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

43
page

Examples

Any valid variable can be used after it has been declared:

tA = 36
' assign new value to the existing variable

tC = tA + tB
' perform any kind of arithmetical or
' logical operation

tE = pr_function(1,tA)
' pass variable to function or procedure,
' by value or address

pr_procedure(1,2,tD,tE)

' use them in conditional and/or
' loop statements and more ...

select case tb
case 1

tA = tD + 4
case 2

tB = tC + 6
case 3
tC = $ff
tb = tc - tA

case else
pr_procedure(1,2,tD,tE)

end select

for tA = 0 to 7
tC = tB >> 1

next tA

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

44

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page
MikroElektronika: Development tools - Books - Compilers

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

45
page

Comments are text that is added to the code for purpose of description or clarifica-
tion, and are completely ignored by the compiler.

' Any text between an apostrophe and the end of the

' line constitutes a comment. May span one line only.

It is a good practice to comment your code, so that you or anybody else can later
re-use it. On the other hand, it is often useful to comment out a troublesome part
of the code, so it could be repaired or modified later.

mikroBasic Code Editor features syntax color highlighting - it is easy to distin-
guish comments from the code due to different color, and comments are also itali-
cized.

dim teC as byte ' declare variable teC,
' variable type is byte

dim teB as byte
dim teA as byte

main:
teC = 12 ' assign value 12 to variable C

if teA > 0 then
teC = 9

else
teA = teB

end if
' you can also comment out part of the
' code you don't want to compile:

' E = gosub pr_function(1,2)

' This function call won't be compiled
end.

COMMENTS

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

46

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Expression is a construction that returns a value. The simplest expressions are
variables and constants, while more complex expressions are constructed from
simpler ones using operators, function calls, indexes, and typecasts.

Rules for creating legal expressions are presented in chapter Implicit Conversion
and Legal Expressions.

These are all expressions:

X ' variable
15 ' integer constant
Calc(X, Y) ' function call
X * Y ' product of X and Y

We will present in short notice rules for building expressions here. But, we should
recollect some information beforehand:

Simple data types include: byte, word, short, integer and longint.

Byte and word types hold only positive values so we’ll call them unsigned.
Ranges are:

byte 0 .. 255
word 0 .. 65535

Short, integer, and longint types can hold both positive and negative numbers so
we’ll call them signed. Ranges are:

short -128 .. 127
integer -32768 .. 32767
longint -2147483648 .. 214748364

EXPRESSIONS

Legal
Expressions

MikroElektronika: Development tools - Books - Compilers

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

You cannot mix signed and unsigned data types in expressions with arithmetic or
logical operators. You can use explicit conversion though.

dim Sa as short
dim A as byte
dim Bb as word
dim Sbb as integer
dim Scccc as longint
...
A = A + Sa ' compiler will report an error
A = A and Sa ' compiler will report an error

' But you can freely mix byte with word..
Bb = Bb + (A * A)

' ..and short with integer and longint

Scccc = Sbb * Sa + Scccc

You can assign signed to unsigned or vice versa only using the explicit conversion.

Sa = short(A)
' this can be done; convert A to short,
' then assign to Sa

Sa = A
' this can't be done,

' compiler will report an error

Relation operators can freely be used even when mixing signed and unsigned data.
For example:

if Sa > B then
Sa = 0

end if

Comparing variable or constant to variable or constant will always produce correct
results.

Comparing expressions requires a little more attention. For more information refer
to the chapter Implicit Conversion and Relation Operators.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

47
page

Note

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

48

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Aside from the include clause, program consists entirely of declarations and
statements, which are organized into blocks.

Names of variables, constants, types, procedures, functions, programs and units
are called identifiers (numeric constant like 321 is not an identifier).

Identifiers need to be declared before you can use them. Only exceptions are few
predefined types, library functions and procedures, PIC MCU SFR (PIC Special
Function Registers), and constants; these are understood by the compiler automati-
cally.

Declaration defines an identifier and, where appropriate, allocates memory for it.
For example:

dim Right as word

declares a variable called Right that holds a word value, while:

sub function Each(dim X as integer, dim Y as integer) as integer

declares a function called Each which collects two integers as arguments and
returns an integer.

Each declaration ends with a semicolon (separator). When declaring several vari-
ables, constants, or types at the same time, you need to write the appropriate
reserved word only once :

dim Height as integer
dim Description as string[10]

The syntax and placement of a declaration depends on the kind of identifier you
are defining. In general, declarations take place only at the beginning of a block,
or at the beginning of the implementation section of a unit (after the include
clause). Specific conventions for declaring variables, constants, types, functions,
and so forth can be found in the appropriate chapters.

DECLARATIONS AND STATEMENTS

Declarations

MikroElektronika: Development tools - Books - Compilers

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Statements define algorithmic actions within a program. Simple statements - like
assignments and procedure calls - can be combined to form loops, conditional
statements, and other structured statements. Refer to Implicit Conversion and
Assignment.

Simple Statements

Simple statement does not contain any other statements. Simple statements include
assignments, and calls to procedures and functions.

Structured Statements

Structured statements are constructed from other statements. Use a structured
statement when you want to execute other statements sequentially, conditionally,
or repeatedly.

Conditional statements if and case execute at most one of their constituents,
depending on a specified criteria.

Loop statements repeat, while, and for execute a sequence of constituent state-
ments repeatedly.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

49

Statements

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

50

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Directives are words of special significance for the mikroBasic, but unlike other
reserved words, appear only in contexts where user-defined identifiers cannot
occur.

You cannot define an identifier that looks exactly like a directive.

Absolute directive specifies the starting address in RAM for variable (if variable is
multi-byte, higher bytes are stored at consecutive locations).

Org directive specifies the starting address of routine in ROM. For PIC16 family,
routine must fit in one page - otherwise, compiler will report an error.

Directive absolute is appended to the declaration of variable:

dim rem as byte absolute $22
' Variable will occupy 1 byte at address $22

dim dot as word absolute $23
' Variable will occupy 2 bytes at addresses $23 and $24

Directive org is appended to the declaration of routine:

sub procedure test org $200
' Procedure will start at address $200

...

end sub

DIRECTIVES

Overview Directive Meaning

Absolute specify exact location of variable in RAM

Org specify exact location of routine in ROM

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

We recommend careful use of absolute directive, because you may overlap two
variables by mistake. For example:

dim Ndot as byte absolute $33
' Variable will occupy 1 byte at address $33

dim Nrem as longint absolute $30
' Variable will occupy 4 bytes at $30, $31, $32, $33,
' so changing Ndot changes Nrem highest
' byte at the same time

mikroBasic uses internal algorithm to distribute variables within RAM. If there is
a need to have variable at specific predefined address, use the directive
absolute. Also if, for some reason, you want to overlap existing variables, use
the directive absolute.

program lite

' example for P16F877A

dim image_trisa as byte absolute 133

main:
image_trisa = $ff

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

51
page

Example

Important

Runtime
Behavior

Byte variable will occupy
1 byte at address $22

Word variable will occupy
2 bytes

At addresses $23 and $24

PIC MCU RAM

m[0]

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

Procedures and functions, collectively referred to as routines, are self-contained
statement blocks that can be called from different locations in a program. Function
is a routine that returns a value when it is executed. Procedure is a routine that
does not return a value.

Once these routines have been defined, you can call them once or multiple times.
Procedure is called upon to perform a certain task, while function is called to com-
pute a certain value. Function calls, because they return a value, can be used as
expressions in assignments and operations.

Procedure declaration has the form:

sub procedure procedureName(parameterList)
localDeclarations
statements

end sub

where procedureName is any valid identifier, statements is a sequence of state-
ments that are executed upon the calling the procedure, and (parameterList) and
localDeclarations are optional declaration of variables and/or constants.

sub procedure pr1_procedure(dim par1 as byte, dim par2 as byte,
dim byref vp1 as byte, dim byref vp2 as byte)

dim locS as byte
par1 = locS + par1 + par2
vp1 = par1 or par2
vp2 = locS xor par1

end sub

par1 and par2 are passed to the procedure by the value, but variables marked by
keyword byref are passed by the address.

52
page

PROCEDURES AND FUNCTIONS

Procedures

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

This means that the procedure call

pr1_procedure(tA, tB, tC, tD)

passes tA and tB by the value: it first creates par1 = tA and par2 = tB, then manip-
ulates par1 and par2 so that tA and tB remain unchanged;

passes tC and tD by the address: whatever changes are made upon vp1 and vp2
are also made upon tC and tD.

Note that a procedure without parameters can be substituted by label which marks
the beginning of “procedure” and keyword return that marks the end of “proce-
dure”. To call such subroutine, use the keyword gosub. These subroutines must be
placed between the label main: and the end of the source file.

main:
if PORTC.1 = 1 then

gosub TogglePortb
end if

... ' some code

TogglePortb: ' routine
portb = not portb

return

end.

Function declaration is similar to procedure declaration, except it has a specified
return type and a return value. Function declaration has the form:

sub function functionName(parameterList) as returnType
localDeclarations
statements

end sub

where functionName is any valid identifier, returnType is any simple type, state-
ments is a sequence of statements to be executed upon calling the function, and
(parameterList) and localDeclarations are optional declarations of variables
and/or constants.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

53
page

Functions

In mikroBasic, use the keyword Result to assign the return value of a function.

Example:

dim locS as word
locS = par1 + par2
Result = locS

end sub

As functions return a value, function calls are technically expressions. For exam-
ple, if you have defined a function called Calc, which collects two integer argu-
ments and returns an integer, then the function call Calc(24, 47) is an integer
expression. If I and J are integer variables, then I + Calc(J, 8) is also an inte-
ger expression. Here are a few examples of function calls:

Sum(tA,63)
Maximum(147,J)
GetValue

Note that cross-calling and recursive calls are not allowed in mikroBasic. Cross-
calling is an instance of procedure A calling procedure B, and then procedure B
calling procedure A. Recursive call is an instance of procedure or function calling
itself. Compiler will report error if cross-calling or recursive calls are encountered
in the code.

mikroBasic has a number of built-in and predefined library routines. For example,
procedure interrupt is the interrupt service routine.

Nested calls are limited to 8-level depth for PIC16 series and 31-level depth for
PIC18 series. Nested call represent call of another function or procedure within a
function or procedure. For closer information, refer to the chapter PIC Specifics.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

54

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

making it simple...

Function Calls

Important

sub function some_function(dim par1 as byte, dim par2 as word) as word

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

55

sub function mask(dim byref num as byte) as byte
' This function returns code for digit

select case num ' for common cathode 7 seg. display.
case 0 result = $3F
case 1 result = $06 ' Note that the value of result is not
case 2 result = $5B ' initialized for values greater than 9
case 3 result = $4F
case 4 result = $66
case 5 result = $6D
case 6 result = $7D
case 7 result = $07
case 8 result = $7F
case 9 result = $6f
end select ' case end

end sub

making it simple...

Example

Nested procedures

or functions calls
are limited to 8
for PIC16 series,

and to 31 for PIC18

Number of allowed

nested calls will be
decremented by 1 if

you use interrupt
procedure and 1 more
if you use *, div, mod Compiler will report

stack overflow error
if you exceed the

allowed number of
nested calls

Procedure or
Function

Procedure or
Function

Procedure or
Function

sub program Stack_overflow

sub procedure interrupt
nop

end sub

sub procedure proc0
nop

end sub

sub procedure proc1
proc0

end sub

sub procedure proc2
proc1

end sub

sub procedure proc3
proc2

end sub

sub procedure proc4
proc3

end sub

sub procedure proc5
proc4

end sub

sub procedure proc6
proc5

end sub

sub procedure proc7
proc6

end sub

main:
proc7

end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

56

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Example of
Stack
Overflow

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Each project consists of a single project file, and one or more module files. To
build a project, the compiler needs either a source file or a compiled file for each
module.

Each module is stored in its own file and compiled separately; compiled modules
are linked to create an application.

Modules allow you to:

- Break large programs into parts that can be edited separately.

- Create libraries that can be used in different programs.

- Distribute libraries to other developers without disclosing the source code.

In mikroBasic programming, all source code including the main program is stored
in .pbas files.

If you perform circular unit references, compiler will give a warning. A simple
instance of circular unit references would be, for example, situation in which
Module1 uses Module2, but in the same time it is specified that Module2 uses
Module1.

Newly created blank unit contains the following :

module Module1

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

57
page

MODULES

Every project consist of single project file and
one or more module files

Project
file

Module
files

mikroBasic variables defined at the beginning of the module are global hidden
variables. When you declare an identifier at the beginning of a module, you cannot
use it outside the unit, but you can use it in any routine defined within the module.
Refer to chapter Scope (Variable Visibility) for more details.

mikroBasic application has one main module file and none or more module files.
All source files have the same extension (pbas). Main file is identified by the key-
word program at the beginning; other module files have the keyword module at
the beginning.

program Project1
include "additional.pbas"
dim tA as word
dim tB as word

main:
tA = sqrt(tb)

end.

Keyword include instructs the compiler which file to compile. If you want to
include a module, add the keyword include followed by the quoted name of the
file. The example above includes the module additional.pbas in the program
file.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

58

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Unit Influence on Scope (Visibility)

Main Unit File

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

59
page

Once you have
written your

program,

mikroBasic
can compile

each unit file

and create mcl
files

mikroBasic
links mcl files

and creates
asm, list and

hex files

Finally, you can
load hex file to
programmer
and program

thedevice

Module
files

Project

Library
mcl files

HEX file

Def file

mcl files

LST file

Output Generator

ASM file

mikroBasic

3.

2.

1.

file

Compiler

Linker

Output Generator

PIC MCU
Programmer

Scope, or identifier visibility, determines if identifier can be referenced in certain
part of the program code. Location of identifier declaration in the code determines
its scope. Identifiers with narrower scope - especially identifiers declared in func-
tions and procedures - are sometimes called local, while identifiers with wider
scope are called global.

All functions and procedures are visible in the whole project, and they are visible
in any part of the program or any module. Constants not local for a procedure or
function are also visible in the whole project. Local constants are visible only in
procedure or function body in which they are declared.

Rules for determining the variable identifier scope are summarized below:

- If the identifier is declared in the declaration of a main module, it is
visible from the point where it is declared to the end of the module.

- If the identifier is declared in the declaration of function, or procedure, its
scope extends from the point where it is declared to the end of the current
block, including all blocks enclosed within that scope.

- If the identifier is declared in the implementation section of a module, but
not within the block of any function or procedure, its scope extends from
the point where it is declared to the end of the module. The identifier is
available to any function or procedure in the module.

PIC SFR (Special Function Registers) such as TMR0, PORTA, etc, are implicitly
declared as global variables of byte type. Their scope is the entire project and they
are visible in any part of the program or any module.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

60

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

SCOPE (IDENTIFIER VISIBILITY)

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

For example, in a function declaration:

sub function Com(dim R as byte) as byte
dim B as char
dim K as byte

...

end sub

first line of the declaration is the function heading . B and K are local variables;
their declarations apply only to the Com function block and override - in this rou-
tine only - any declarations of the same identifiers that may occur in the program
module or at beginning of a module.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

61
page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

62

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Program elements (constants, variables and routines) need to be declared in their
proper place in the code. Otherwise, compiler may not be able to comprehend the
program correctly.

Organization of the main unit should have the following form:

program program_name ' program name
include ... ' include other units

symbol ... ' symbols declaration
const ... ' constants declaration
dim ... ' variables declaration

sub procedure procedure_name ' procedures declaration
...

end sub

sub function function_name ' functions declaration
...

end sub

main: ' program must start with label
' main

... ' program body

end. ' end of program

making it simple...

PROGRAM ORGANIZATION

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Organization of other modules should have the following form:

module unit_name ' unit name
include ... ' include other units

symbol ... ' symbols declaration
const ... ' constants declaration
dim ... ' variables declaration

sub procedure procedure_name ' procedures declaration
...

end sub

sub function function_name ' functions declaration
...

end sub

end. ' end of module

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

63
page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

64

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBasic is capable of both implicit and explicit conversion of data types.
Implicit conversion is the one automatically performed by compiler. On the other
hand, explicit conversion is performed only on demand issued by user.

This means that you can, obeying a few rules, combine simple data types with any
operators to create legal expressions and statements. Refer to Data Types if you
are not familiar with data types supported by mikroBasic.

As stated in the chapter about operators, you cannot mix signed and unsigned data
types in expressions that contain arithmetic or logical operators. You can assign
signed to unsigned or vice versa only using the explicit conversion.

- Implicit conversion takes place between byte and word, so you can com-
bine byte and word with any operators to form legal expressions.

- Implicit conversion takes place between short, integer and longint so you
can combine short, integer and longint with any operators to form legal
expressions.

- Relation operators can be used without any restraints. Smart algorithm
governing relation operators allows comparing any two data types.

- The compiler provides automatic type conversion when an assignment is
performed, but does not allow to assign signed data type to unsigned and
vice versa.

You can find more information on implicit conversion in chapters Assignment and
Implicit Conversion, and Implicit Conversion and Legal Expressions.

Explicit conversion can be executed at any point by inserting type (byte, word,
short, integer, or longint) ahead of the expression to be converted. The expression
must be enclosed in parentheses. You can't execute explicit conversion on the
operand left of the assignment operator.

page

TYPE CONVERSION

Implicit Conversion

Explicit Conversion

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Special case is conversion between signed and unsigned. It is important to under-
stand that explicit conversion between signed and unsigned data does not change
binary representation of data; it merely allows copying of source to destination.

Example 1:

dim tA as byte
dim tB as byte
dim tC as byte

if tA + tB > tC then
tA = 0

end if

This could be wrong, because there is an expression on the left. Compiler evalu-
ates it, and treats it as a variable of type that matches type of tA or tB (the larger
of the two); in this case - a byte.

tA = 250
tB = 10
tC = 20

if tA + tB > tC then
tA = 0

end if

In this case, since the result of the expression is treated as byte, we get that 250 +
10 is lower than 20. Actually, the result of the expression is truncated to byte:
250 + 10 is 4, and 4 is lower than 20.

But if we wrote it like this:

if word(tA + tB) > tC then
tA = 0

end if

.it would be correct, because we have explicitly instructed the compiler to treat tA
+ tB as a word. Hence, the result will equal 260 and greater than 20, returning the
expected result.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

65
page

Example 2:

Explicit conversion can also be used when you are sure which type you want to
convert expression to. Consider the following lines:

dim tA as byte
dim tB as byte
dim tC as byte
dim A_ as short
dim B_ as short

tA = byte(A_)
B_ = short(tA + tB * tC)

It is important to understand that explicit conversion between signed and unsigned
data does not change binary representation of data; it only allows copying source
to destination. Thus, if A_ was -1, its binary representation would be 11111111,
and A would become 255.

Even if you have ordered the explicit conversion, compiler will perform implicit if
necessary.

Example 3:

You cannot execute explicit conversion on the operand left of the assignment oper-
ator:

word(b) = Bb ' compiler will report an error.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

66

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

67
page

mikroBasic provides automatic type conversion every time an assignment is per-
formed. But it does not allow assigning signed data to unsigned and vice versa,
because there is a significant risk of losing information.

Implicit conversion takes place when assignment is performed:

between byte and word
between short, integer, and longint

Destination will store the correct value only if it can properly represent the result
of expression (that is, if the result fits in destination range).

Feel free to use operands of any size under the defined rules, but keep in mind that
the PIC is optimized to work with bytes. Every operation involving more complex
data types (word, integer or longint) will take more run time and more memory. So
for the best possible results, use as small destinations and operands as you can.

A = B

If A and B are of the same type, value of B is simply assigned to A. More interest-
ing case is if A and B are of different types:

dim A as byte
dim B as word
...
B = $ff0f

A = B ' A becomes $0f, higher byte $ff is lost

If A is more complex than B, then B is extended to fit the correct result:

dim A as word
dim B as byte
...
B = $ff

A = B ' A becomes $00ff

ASSIGNMENT AND IMPLICIT CONVERSION
Overview

Notes

Examples

For signed types :

dim B_ as integer
dim A_ as short
...
A_ = -10

B_ = A_ ' B becomes -10

In hex representation, this means that the higher byte is sign extended.

C = expression

Calculated value of the expression will be assigned to the destination. Part of the
information may be lost if the destination cannot properly represent the result of
the expression (i.e. if result can't fit in range of destination data type). Browse
through examples for more details.

For example (this is correct):

C = A + B

C is byte, so its range is 0 .. 255. If (A + B) fits in this range you will get the cor-
rect value in C.

A = 123
B = 90

C = A + B ' C becomes 213

But what happens when A + B exceeds the destination range? Let's assume the
following:

A = 241
B = 128

C = A + B ' C becomes 113, obviously incorrect

See the following figure for closer explanation.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

68

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

In order to fully understand this, we should recollect the data types.

Data type determines not only the range of values variable can hold, but also the
amount of RAM space it consumes. This is fundamental in practical programming.

Let's assume that our destination variable C is a byte, consuming 8 bits of PIC
RAM, spanning values 0 to 255. Now observe what really happens inside the PIC:
the result should be 369, but in binary representation it equals (1)01110001.
Because C is limited to 8 bits it will store the lower 8 bits while dropping the rest
of the information (the most significant bit). 01110001 equals 113 in decimal rep-
resentation.

dim testA as byte
dim testB as byte
dim Cc as word

main:
testA = 250
testB = 10

Cc = testA + testB ' this will always be correct because
' range for Cc is 0..65535 and maximum result
' of adding two bytes is only 255 + 255 = 510

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

69
page

= +

+

1 01 11 100

0 00 0 00 01

1 1 1 10000

=

Lets see what happens
when we add two bytes

and assign result to
byte

First byte has value
241 and its binary
representation is

11110001

Second byte has value
128 and its binary
representation is

10000000

1

Result has 9 bits.
Because destination
byte can hold only 8

bits, the most
significant bit is lost

As byte3 holds
01110001, result is 113

instead of 369. Most
significant bit is lost:

(1)01110001

byte3 byte2 byte1

As already stated, destination will store the correct value only if it can properly
represent the result of the expression (that is, the result fits in destination range).

dim testA as byte
dim testB as byte
dim Cc as word
dim Sa as short
dim Sb as short
dim Sc as short
dim Saa as integer
dim Sbbbb as longint

main:
testA = 250
testB = 10
Cc = testA * testB + testB ' Cc becomes 2510;
Sb = 120
Sc = -100
Sa = Sb + Sc ' Sa becomes 20;
Sa = Sb - Sc ' Sa is short with range -127..128,

' thus, instead of 220,
' Sa becomes -36, because only
' lower 8 bits are registered

Saa = (Sb * Sc) div 13
' Saa becomes -923

Sbbbb = integer(Sb * Sc) * Sc
' Sbbbb becomes 1200000

end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

70

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

71
page

To create legal expressions, you can:

1. combine byte and word with any operators,

2. combine short, integer, and longint (note that longint does not employ *,
div, mod) with any operators,

3. use Relation operators
expression1 (relation operator) expression2

Expression1 and expression2 can be any legal expressions. Be sure to understand
how implicit conversion works with relation operators.

Comparing variable or constant to variable or constant always produces correct
results.

Comparing expressions requires a little more attention.

expression1 (relation operator) expression2

Expressions can be any legal expressions created with arithmetical or logical oper-
ators. Every expression no matter how complex, can be decomposed to a number
of simple expressions. Simple expression is expression composed of just one oper-
ator and its operands. Operator is logical or arithmetical. Examine the rules pre-
sented below.

1. Complex expression is decomposed to a number of simple expressions, with
respect to operator precedence and overriding parenthesis.

2. Simple expression is now treated in the following manner: if operands are of the
same type, operation is performed, assuming that the result is of the same type.

3. If operands are not of the same type, then less complex operand (speaking
in terms of data range) is extended:

IMPLICIT CONVERSION AND LEGAL EXPRESSIONS
Overview

Implicit
Conversion
and Relation
Operators

Rules for
Comparing
Expressions

- If one operand is byte and another is word, byte is converted in
word.

- If one operand is short and another is integer, short is converted to
integer.

- If one operand is short and another is longint, short is converted to
longint.

- If one operand is integer and another is longint, integer is converted to
longint.

4. After the first expression is decomposed to simpler ones, each of these simpler
ones is evaluated abiding the rules presented here.

Expression a + b + c is decomposed like this:

First evaluate a + b and get (value of a + b)

This gives us another simple expression
(value of a + b) + c

Let's assume a and b are bytes and c is word, with values:

a = 23
b = 34
c = 1000

Compiler first calculates value of a + b and assumes that the result is byte:
a + b gives 57.

As c is of word type, result of adding a + b is casted to word and then added to c:
57 + c is 1057.

Signed and unsigned numbers cannot be combined using arithmetical and logical
operators. Rules presented above are not valid when assigning expression result to
variable.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

72

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

r = expression

Refer to chapter Assignment and Implicit Conversion for details.

When adding operands of the same type and assigning value to third operand,
incorrect value may be proceeded if the result exceeds range of declared data type.
Similar rules apply to other arithmetical operators.

For example, if a and b are bytes, and cc is word:

a = 56
b = 200
cc = 1000

a + b equals 1, because result type is assumed to be same as the operands' type
(byte).

Added to cc, we get 1001, instead of the expected 1256.

Solution is to simply instruct the compiler to evaluate expression as you explicitly
define. For example, you could explicitly cast the expression, like this:

word(a + b + c).

As result fits in word range, we get 1256 as expected.

For more details, refer to chapter Explicit Conversion.

Comparing variables and constants always produces the correct results regardless
of the operands' type.

mikroBASIC
making it simple...

73
page

MikroElektronika: Development tools - Books - Compilers

Note

if A + B > A then

First, compiler evaluates the expression on the left. During runtime, result is stored
in a variable of type that matches the largest data type in the expression. In this
case it is byte, as variables A and B are both bytes.

This is correct if the value does not exceed range 0..255, that is, if A + B is less
than 255.

Let's assume Aa is of word type :

if Aa + B > A ...

First, compiler evaluates the expression on the left. The result value is treated as
type that matches the largest data type in the expression. Since Aa is word and B
is byte, our result will be treated as word type.

This is correct if the value does not exceed range 0..65535, i.e. if Aa + B is less
than 65535.

' if tC is less than zero, tC = -tC

if tC < 0 then
tC = -tC

end if

' Stay in loop while C is not equal to variable
' compare_match; increment C in every cycle

while tC <> compare_match
tC = tC + 1

wend

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

74

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

There are three types of operators in mikroPascal:

Arithmetic Operators
Logical (Bitwise) Operators
Relation Operators (Comparison Operators)

In complex expressions, operators with higher precedence are evaluated before the
operators with lower precedence; operators of equal precedence are evaluated
according to their position in the expression starting from the left.

Example 1:

B and T + A
' (bitwise and) B and T, then add A to the result;
' and is performed first, because it has precedence over +.

Example 2:

A - B + D
' first subtract B from A, then add D to the result;
' - and + have the equal precedence, thus the operation on
' the left is performed first.

Example 3:

' You can use parentheses to override these precedence rules.
' An expression within parentheses is evaluated first, then
' treated as a single operand. For example:

(A + B) * D
' multiply D and the sum of A and B.

A + B * D
' first multiply B and D and then add A to the product.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

75
page

OPERATORS

Operator Precedence

Operator Priority

not first (highest)

*, div, mod, and, shl, shr second

+, -, or, xor third

=, <>, <, >, <=, >= fourth (lowest)

You cannot mix signed and unsigned data types in expressions with arithmetic or
logical operators. If you need to combine signed with unsigned, you will have to
use explicit conversion.
Example:

dim Sa as short
dim teA as byte
dim Bb as word
dim Sbb as integer
dim Scccc as longint
...
teA = teA + Sa ' compiler will report an error
teA = teA and Sa ' compiler will report an error

' But you can freely mix byte and word . .
Bb = Bb + (teA * teA)

' . . and short with integer and longint;
Scccc = Sbb * Sa + Scccc

You can assign signed to unsigned, or unsigned to signed only using the explicit
conversion. More details can be found in chapter Implicit Conversion and
Assignment Operator.

Sa = short(teA)
' this can be done

Sa = teA

' this can't be done, compiler will report an error

Relation operators can be used with all data types, regardless of the sign.
Example:

if Sa > teA then
Sa = 0

end if

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

76

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Rules for Creating Legal Expressions

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Notes for Relation Operators

Comparing variable or constant to variable or constant will always produce correct
results.

Comparing expressions requires a little more attention - when compiler is calculat-
ing value of the expression to be compared, it first has to evaluate the expression.
If the result of the expression exceeds the range of the largest data type in the
expression, comparison will most likely be inaccurate. This can be avoided by
using the explicit conversion.

More details can be found in chapter Implicit Conversion and Relation Operators.

PIC MCUs are optimized for working with bytes. It takes less time to add two
bytes than to add two words, naturally, and similar pattern is followed by all the
other operators. It is a good practice to use byte or short data type whenever
appropriate. Although the improvement may seem insignificant, it could prove
valuable for applications which impose execution within time boundaries.

This is a recommendation which shouldn't be followed too literally - word, integer
and longint are indispensable in certain situations.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

77
page

Runtime Behavior

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

78

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

A div B is the value of A divided by B rounded down to the nearest integer. The
mod operator returns the remainder obtained by dividing its operands. In other
words,

X mod Y = X – (X div Y) * Y.

If 0 (zero) is used explicitly as the second operand (i.e. X div 0), compiler will
report an error and will not generate code. But in case of implicit division by zero:
X div Y , where Y is 0 (zero), result will be the maximum value for the appropri-
ate type (for example, if X and Y are words, the result will be $ffff).

Destination will store the correct value only if it can properly represent the result
of the expression (that is, if result fits in the destination range). More details can
be found in chapter Assignment and Implicit Conversion.

mikroBasic is more flexible compared to standard Basic as it allows both implicit
and explicit type conversion. In mikroBasic, operator can take operands of differ-
ent type; refer to chapter Type Conversion for more details. You cannot combine
signed and unsigned data types in expressions with arithmetic operators.

Arithmetic Operators
Overview

Mod and Div

Important

Arithmetics
and Data
Types

Operator Operation Operand Types Result Type

+ addition byte, short, integer,
word, longint

byte, short, integer,
word, longint

- subtraction byte, short, integer,
word, longint

byte, short, integer,
word, longint

* multiplication byte, short, integer,
word

integer, word,
longint

div division byte, short, integer,
word

byte, short, integer,
word

mod remainder byte, short, integer,
word

byte, short, integer,
word

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

If number is converted from less complex to more complex data type, upper bytes
are filled with zeros. If number is converted from more complex to less complex
data type, data is simply truncated (upper bytes are lost).

If number is converted from less complex to more complex data type, upper bytes
are filled with ones if sign bit equals 1 (number is negative). Upper bytes are filled
with zeros if sign bit equals 0 (number is positive). If number is converted from
more complex to less complex data type, data is simply truncated (upper bytes are
lost).

program extr

dim Sa as short
dim A as byte
dim Bb as word
dim Sbb as integer
dim Scccc as longint

A = A + Sa
' compiler will report an error,
' mixing signed with unsigned;

A = A - Sa
' compiler will report an error,
' mixing signed with unsigned;

' But you can freely combine byte with word . .

Bb = Bb + (A * A)

' . . and short with integer and longint

Scccc = Sbb * Sa + Scccc

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

79
page

Unsigned and
Conversion

Signed and
Conversion

Example

Unary arithmetic operators can be used to change sign of variables:

a = 3
b = -a

' assign value -3 to b

PIC microcontrollers are optimized to work with bytes. Refer to PIC MCU
Specific.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

80

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Unary
arithmetic
operators

Operator Operation Operand Types Result Types

+(unary) sign identity short, integer,
longint

short, integer,
longint

- (unary) sign negation short, integer,
longint

short, integer,
longint

Runtime
Behavior

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Boolean operators are not true operators, because there is no boolean data type
defined in mikroBasic.

These "operators" conform to standard Boolean logic. They cannot be used with
any data type, but only to build complex conditional expression.

if (astr > 10) and (astr < 20) then
PORTB = 0xff
end if

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

81
page

Boolean Operators

Operator Operation

not negation

and conjunction

or disjunction

Example

<< : shift left the operand for a number of bit places specified in the right operand
(must be positive and less then 255).

>> : shift right the operand for a number of bit places specified in the right
operand (must be positive and less then 255).

For example, if you need to extract the higher byte, you can do it like this:

dim temp as word

main:
TRISA = word(temp >> 8)

end.

Destination will hold the correct value if it can properly represent the result of the
expression (that is, if result fits in destination range). More details can be found in
chapters Type Conversions and Assignment and implicit Conversion.

mikroBasic is more flexible compared to standard Basic as it allows both implicit
and explicit type conversion. Note that you cannot mix signed and unsigned data
types in expressions with logical operators.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

82

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Logical (Bitwise) Operators

Overview

<< and >>

Important

Logical
Operators
and Data
Types

Operator Operation Operand Types Result Types

not bitwise negation byte, word, short,
integer, long

byte, word, short,
integer, long

and bitwise conjunction byte, word, short,
integer, long

byte, word, short,
integer, long

or bitwise disjunction byte, word, short,
integer, long

byte, word, short,
integer, long

xor bitwise xor byte, word, short,
integer, long

byte, word, short,
integer, long

<< bit shift left byte, word, short,
integer, long

byte, word, short,
integer, long

>> bit shift right byte, word, short,
integer, long

byte, word, short,
integer, long

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

If number is converted from less complex to more complex data type, upper byte
is filled with zeros;

If number is converted from more complex to less complex data type, data is sim-
ply truncated (upper bytes are lost).

Example for unsigned and logical operators :

dim teA as byte
dim Bb as word

main:
Bb = $F0F0
teA = $aa
Bb = Bb and teA ' Bb becomes $00a0

end.

In this case, teA is treated as a word with upper byte equal to 0 prior to the opera-
tion.

If number is converted from less complex data type to more complex, upper bytes
are filled with ones if sign bit is 1 (number is negative); upper bytes are filled with
zeros if sign bit is 0 (number is positive).

If number is converted from more complex data type to less complex, data is sim-
ply truncated (upper bytes are lost).

dim Sa as short
dim Sbb as integer

main:
Sbb = $70FF
Sa = -12
Sbb = Sbb and Sa ' Sbb becomes $70f4

end.

In this case, Sa is treated as an integer with the upper byte equal to $FF (this in
fact is sign extending of short to integer) prior to the operation.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

83
page

Unsigned and
Conversion

Signed and
Conversion

main:
Sbb = $OFF0
Saa = $0a
Sbb = Sbb and Sa ' Sbb becomes $0000

end.

In this case, Sa is treated as an integer with the upper byte equal to $00 (this in
fact is sign extending of short to integer) prior to the operation.

dim teA as byte
dim teB as byte
dim teC as byte

' The logical operators perform bitwise manipulation
' on the operands. For example, if the value stored in
' teA (in binary) is 00001111 and the value stored in
' teB is 10000001, the following statements..

main:
teA = $0F ' .. assign the value 00001111 to teA.
teB = $81 ' .. assign the value 10000001 to teB.

teC = teA or teB
' Performs bitwise or with teA, teB and the
' result is assigned to teC (value 10001111)

teC = not teA
' Performs bitwise not with teA and the
' result is assigned to teC (value 11110000)

teC = teA << 4
' shift teA to the left for a number of positions
' specified in the operand on the right;
' operand on the right must be positive.
' In this example teC becomes $F0
' All bits shifted in are zeros.

teC = teA >> 4
' shift teA to the right for a number of positions
' specified in operand on the right;
' operand on the right must be positive.
' In this example C becomes $00.

' New bits shifted in are zeros if operand type is
' byte/word sign extended for short, word, integer.

end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

84

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

' You cannot mix signed and unsigned data types in
' expressions with logical operators:

dim Sa as short
dim teA as byte
dim Bb as word
dim Sbb as integer
dim Scccc as longint

main:
teA = teA + Sa ' compiler will report an error
teA = teA and Sa ' compiler will report an error

' But you can freely mix byte with word . .
Bb = Bb and (not teA)

' . . and short with integer and longint.
Scccc = Sbb xor Sa or Scccc
end.

PIC microcontrollers are optimized to work with bytes. Refer to PIC MCU
Specific.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

85
page

Runtime
Behavior

Relation operators (Comparison Operators) are commonly used in conditional and
loop statements to control the program flow.

In general case:

Expression1 (relation operator) Expression2,

expression1 and expression2 can be any legal expression. Be familiar with how
implicit conversion works with relations operators. You can compare signed and
unsigned values.

1. Complex expression is decomposed to a number of simple expressions, with
respect to operator precedence and overriding parenthesis.

2. Simple expression is now treated in the following manner: if operands are of the
same type, operation is performed, assuming that the result is of the same type.

3. If operands are not of the same type, then less complex operand (speaking in
terms of data range) is extended:

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

86

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Relation (Comparison) Operators
Overview Operator Operation Operand Types Result Types

= equality All simple types True or False

<> inequality All simple types True or False

< less-than All simple types True or False

> greater-than All simple types True or False

<= less-than-or-equal All simple types True or False

>= greater-than-or-
equal All simple types True or False

Rules for
Comparing
Expressions

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

If one operand is byte and another is word, byte is converted in word.

If one operand is short and another is integer, short is converted to integer.

If one operand is short and another is longint, short is converted to longint.

If one operand is integer and another is longint, integer is converted to longint.

4. After the first expression is decomposed to simpler ones, each of these is evalu-
ated abiding the rules presented here.

Expression a + b + c is decomposed like this:

First evaluate a + b and get (value of a + b)

This gives us another simple expression
(value of a + b) + c

Let's assume a and b are bytes and c is word,
with values:

a = 23
b = 34
c = 1000

Compiler first calculates value of a + b and assumes
that the result is byte: a + b gives 57.

As c is of word type, result of adding a + b is
casted to word and then added to c: 57 + c is 1057.

Signed and unsigned numbers cannot be combined using arithmetical and logical
operators. Rules presented above are not valid when assigning expression result to
variable.

r = expression

Refer to Assignment and Implicit Conversion for more details.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

87
page

Illustration

Comparing variables and constants always produces the correct results regardless
of the operands' type.

if A > B then ...
if A > 47 then ...

if A + B > A ...

First, compiler evaluates the expression on the left. During the run-time, result is
stored in a variable of type that matches the largest data type in the expression. In
this case it is byte, as variables A and B are both bytes.

This is correct if the value does not exceed range 0..255, that is, if A + B is less
then 255.

Let's assume Aa is of word type :

if Aa + B > A ...

First, compiler evaluates the expression on the left. The result value is treated as
type that matches the largest data type in the expression. Since Aa is word and B
is byte, our result will be treated as word type.

This is correct if the value does not exceed range 0..65535, that is, if A + B is less
then 65535.

' if tC is less than zero, tC = -tC :

if tC < 0 then
tC = -tC

end if

' Stay in loop while C is not equal to variable
' compare_match; increment C in every cycle:

while tC <> compare_match
tC = tC + 1

wend

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

88

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Examples

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Conditional statements control which part(s) of the program will be executed,
depending on a specified criteria. There are two conditional statements in
mikroBasic:

SELECT CASE statement,
IF statement.

We suggest browsing the chapters Relation Operators and Implicit Conversion and
Relation Operators, if you have not done so already.

Labels represent a more clear-cut way of controlling the program flow. You can
declare a label below variables declarations, but you cannot declare two labels
under the same name within the same routine. Name of the label needs to be a
valid identifier. Multiple label declarations in single line are not allowed.

Goto statement jumps to the specified label unconditionally, and the program exe-
cution continues normally from that point on.

Here is an example:

program test

dim jjj as byte

main:
' some instructions ...

goto myLabel
' some instructions...

myLabel:
' some instructions...

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

89
page

CONDITIONAL STATEMENTS

Labels and Goto

Select Case statement is used for selecting one of several available branches in the
program course. It consists of a selector variable as a switch condition, and a list
of possible values. These values can be constants, numerals, or expressions.

Eventually, there can be an else statement which is executed if none of the labels
corresponds to the value of the selector.

Proper declaration of case statement is:

select case Selector
case Values_1

Statements_1
case Values_2

Statements_2
...
case Values_N

Statements_n
end select

where selector is any variable of simple type or expression, and each Values is a
comma-delimited sequence of expressions.

Case statement can have a final else clause:

select case Selector
case Values_1

Statements_1
case Values_2

Statements_2
...
case Values_N

Statements_n
case else

Statements_else

end select

As soon as the case statement is executed, at most one of the statements state-
ments_1 .. statements_n will be executed. The Values which matches the selector
determines the statements to be executed.

If none of the Value items matches the selector, then the statements_else in the else
clause (if there is one) are executed.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

90

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Select Case Statement

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

select case message_flag
case 0

opmode = 0
LCD_Out(1, 1, "Test Message 0")

case 1, 2, 3, 4
opmode = 1
LCD_Out(1, 1, "Test Message 1")

case 5, 6, 7
opmode = 2
LCD_Out(1, 1, "Test Message 2")

end select

In case there are multiple matches, the first matching block will be executed.

For example, if state2 equals -1, msg will be OK, not Error:

select case state
case 0, state0, state1, state2

msg = "OK"
case -1, state0 or errorFlag, state1 or errorFlag

msg = "Error"
case else

msg = "No input"
end select

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

91
page

Examples

There are two forms of if statement:

Syntax of if..then statement is:

if expression then
statements

end if

where expression returns a True or False value. If expression is True, then state-
ment is executed, otherwise it's not.

Syntax of if..then..else statement is:

if expression then
statements1

else
statements2

end if

where expression returns a True or False value. If expression is True, then state-
ments1 are executed; otherwise statements2 are executed. Statements1 and state-
ments2 can be statements of any type.

Nested if statements require additional attention. General rule is that the nested
conditionals are parsed starting from the innermost conditional, with each else
bound to the nearest available if on its left.

if expression1 then
if expression2 then

statements1
else

statements2
end if

end if

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

92

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

If Statement

Nested IF

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Compiler treats the construction like this:

if expression1 then
[if expression2 then

statement1
else

statement2
end if]

end if

To force the compiler to interpret our example the other way around, we would
have to write it explicitly:

if expression1 then
if expression2 then

statement1
end if

else
statement2

end if

if J <> 0 then
Res = I div J

end if

if j <> 0 then
i = i + 1
j = 0

end if

...

if v = 0 then
portb = por2
porta = 1
v = 1

else
portb = por1
porta = 2
v = 0

end if

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

93
page

Examples

Loops are a specific way to control the program flow. By using loops, you can
execute a sequence of statements repeatedly, with a control condition or variable
to determine when the execution stops.

You can use the standard break and continue to control the flow of a
do..loop until, while, or for statement. Break terminates the statement in
which it occurs, while continue begins executing the next iteration of the
sequence.

mikroBasic has three kinds of control loop instructions:

DO..LOOP UNTIL statement
WHILE statement
FOR statement

Note that certain operations may take longer time to be executed, which can lead
to undesired consequences.

If you add two variables of short type and assign the result to short, it will be
faster than to add two longint and assign value to longint, naturally.

Take a look at the following code :

dim Sa as short
dim Sb as short
dim Saaaa as longint
dim Sbbbb as longint

for Sa = 0 to 100
Sb = Sb + 2

next Sa

for Saaaa = 0 to 100
Sbbbb = Sbbbb + 2

next Saaaa
end.

PIC will execute the first loop considerably faster.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

94

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

LOOPS

Runtime
Behavior

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

For statement requires you to specify the number of iterations you want the loop
to go through. Syntax of for statement is:

for counter = initialValue to finalValue [step step_value]
statement_1
statement_2
...
statement_N

next counter

where counter is variable; initialValue and finalValue are expressions compatible
with counter; statement_X is any statement that does not change the value of
counter; step_value is value that is added to the counter in each iteration.
Step_value is optional, and defaults to 1 if not stated otherwise. Be careful when
using large values for step_value, as overflow may occur.

Every statement between for and next will be executed once for each iteration.

Be careful not to create endless loop by mistake. The following statement:

for counter = initialValue to finalValue
statement

next counter

will result in an an endless loop if finalValue is greater than, or equal to maximum
value of counter data type. For example, this will be an endless loop, if counter is
of byte type:

for counter = 0 to 255
nop

next counter

' or

for counter = 0 to 500
nop

next counter

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

95
page

For Statement

Endless
Loop

Here is a simple example of a for loop used for emitting hex code on PORTB.
Nine digits will be printed with one second delay, by incrementing the counter.

for i = 1 to 9
portb = i
delay_ms(1000)

next i

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

96

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Syntax of do..loop statement is:

do
statement_1
...
statement_N

loop until expression

where expression returns a True or False value. Do..loop statement executes
statement_1 ... statement_N continually, checking the expression after each itera-
tion. Eventually, when expression returns True, do..loop statement terminates.

The sequence is executed at least once because the check takes place in the end.

i = 0
do

i = i + 1 ' execute these 2 statements
PORTB = i ' until i equals 10 (ten)

loop until i = 10

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

97
page

Do..Loop Until Statement

Example

Syntax of while statement is:

while expression
statement_0
statement_1
...
statement_N

wend

Expression is tested first. If it returns True, all the following statements enclosed
by while and wend will be executed. It will keep on executing statements until
the expression returns False.

Eventually, as expression returns False, while will be terminated without execut-
ing statements.

While is similar to do..loop until, except the check is performed at the
beginning of the loop. If expression returns False upon first test, statements will
not be executed.

while i < 90
i = i + 1

wend

...

while i > 0
i = i div 3
PORTA = i

wend

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

98

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

While Statement

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

99
page

Sometimes it can be useful to write part of the program in assembly. ASM state-
ment allows you to embed PIC assembly instructions into Basic code.

Note that you cannot use numerals as absolute addresses for SFR or GPR vari-
ables in assembly instructions. You may use symbolic names instead (listing will
display these names as well as addresses). Also, you cannot use Labels in assem-
bly; instead, you can use relative jumps such as goto $-1.

Declaration of asm statement is:

asm
statementList

end asm

where statementList is a sequence of assembly instructions.

Be careful when embedding assembly code - mikroBasic will not check if assem-
bly instruction changed memory locations already used by Basic variables.

Also, you cannot write comments in assembly.

asm
movlw 67
movwf TMR0

end asm

asm ' second instruction is incorrect, see above
MOVLW 0
MOVWF $5
MOVWF PORTA

end asm ' note that you cannot write comments in assembly

ASM Statement

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

100

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

In order to get the most from your mikroBasic compiler, you should be familiar
with certain aspects of PIC MCU. This chapter is not essential, but it can provide
you a better understanding of PICs' capabilities and limitations, and their impact
on the code writing.

For start, you should know that arithmetical operations such as addition and sub-
traction are carried out by ALU (Arithmetical Logical Unit). With PIC MCUs
(series PIC16 and PIC18), ALU is optimized for working with bytes. mikroBasic
is capable of handling much more complex data types, but note that these can
increase the time needed for performing even simple operations.

Also, not all PIC MCU models are of equal performance. PIC16 series lacks hard-
ware resources to multiply two bytes in HW - it is carried out by software algo-
rithm generated by mikroBasic. On the other hand, PIC18 series has HW multipli-
er, and as a result, multiplication works considerably faster.

Loops are convincing examples of byte type efficiency, especially if statements
repeated hundreds of times are involved. Consider the following lines:

for i = 1 to 100
tA = ta + 1

next i

...

for ii = 1 to 100
Aa = Aa + 1

next ii

where i and A are variables of byte type, and ii and Aa are variables of word type.
First loop will be executed considerably faster.

Although memory management is completely under the compiler's control, you
can explicitly assign address to variable by means of directive absolute. See
Directives for more information.

NOTE : Be aware that nested function and procedure calls have limited depth - 8
for PIC16 series and 31 for PIC18 series.

PIC MCU SPECIFIC

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

101
page

mikroBasic compiler was designed with reliability and comfort in mind. Thus, cer-
tain modifications of standard Basic were necessary in order to make the compiler
more PIC MCU compatible.

PIC SFR (Special Function Registers) are implicitly declared as global variables
of byte type. Their scope is the entire project - they are visible in any part of the
program or any unit. Memory management is completely under compiler's control,
so there is no need to worry about PIC memory banks and storing the variables.

Accessing to individual bits of SFR (as accessing to bit of any variable of byte
type) is very simple. Use identifier followed by dot, and a pin:

Identifier.PIN ' PIN is a constant value between 0..7

For example:

sub procedure check
ifPORTB.1 = 1 then
counter = counter + 1

else
INTCON.GIE = 0

end if
end sub

Interrupts can be easily handled in mikroBasic by means of predefined procedure
interrupt. All you need to do is include the complete procedure definition in your
program. mikroBasic saves the following SFR when entering interrupt: PIC12 and
PIC16 series: W, STATUS, FSR, PCLATH; PIC18 series: FSR (fast context is
used to save WREG, STATUS, BSR). Upon return from interrupt routine, these
registers are restored.

NOTE: For PIC18 family, interrupts must be of high priority. mikroBasic does not
support low priority interrupts.

mikroBASIC SPECIFIC

For example, when handling the interrupts from TMR0
(if no other interrupts are allowed):

sub procedure interrupt
counter = counter + 1
TMR0 = 96
INTCON = $20

end sub

In case of multiple interrupts enabled, you must test which of the interrupts
occurred and then proceed with the appropriate code (interrupt handling):

sub procedure interrupt

if INTCON.TMR0IF = 1 then
counter = counter + 1
TMR0 = 96
INTCON.TMR0IF = 0

else
if INTCON.RBIF = 1 then

counter = counter + 1
TMR0 = 96
INTCON.RBIF = 0

end if
end if

end sub

See also:

Built-in Functions and Procedures
Library Functions and Procedures

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

102

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

103
page

COMPILER ERROR MESSAGES
Type of Error Error No.
_SYNTAX_ERROR 100
_NOT_VALID_IDENT 101
_INVALID_STATEMENT 102
_STACK_OVERFLOW 103
_INVALID_OPERATOR 104
_IF_ELSE_ERROR 105
_VARIABLE_EXPECTED 106
_CONSTANT_EXPECTED 107
_ASSIGNMENT_EXPECTED 108
_BREAK_ERROR 109
_UNKNOWN_TYPE 110
_VARIABLE_REDECLARED 111
_VARIABLE_NOT_DECLARED 112
_MAX_LINE_NUMBER_EXCEEDED 113
_ALREADY_DECLARED // for proc and func 114
_TOO_MANY_PARAMS 115
_NOT_ENOUGH_PARAMS 116
_TYPE_MISMATCH 117
_FILE_NOT_FOUND 118
_NOT_ENOUGH_RAM 119
_USES_IN_BETA_V 120
_INTERNAL_ERROR 121
_NOT_ENOUGH_ROM 122
_INVALID_ARRAY_TYPE 123
_BAUD_TOO_HIGH 124
_DIVISION_BY_ZERO 125
_INCOMPATIBLE_TYPES 126
_TOO_MANY_CHARACTERS 127
_OUT_OF_RANGE 128
_USES_POSITION 129
_INVALID_ASM_COMMAND 130
_OPERATOR_NOT_APPLICABLE 131
_EXPRESSION_BY_ADDRESS 132
_IDENTIFIER_EXPECTED 133
_MOVING_ARRAYS 134

Error
Messages

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

104

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Warning
Messages

Hint
Messages

Linker
Error
Messages

Type of Error Error No.

_CODE_AFTER_END 200

_BAUD_ERROR 201

_UPPER_BYTES_IGNORED 202

_UPPER_WORDS_IGNORED 203

_IMPLICIT_TYPECAST 204

Type of Error Error No.

_VAR_NOT_USED 300

_PROC_NOT_CALLED 301

Type of Error Error No.

_UNKNOWN_ASM 400

_ADDRESS_CALC_ERROR 401

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

105
page

CHAPTER

MikroElektronika: Development tools - Books - Compilers

3

Built-in and
Library Routines

mikroBasic provides a number of built-in and library routines which help you devel-
op your application faster and easier. Libraries for ADC, CAN, USART, SPI, I2C,
1-Wire, LCD, PWM, RS485, numeric formatting, bit manipulation, and many other
are included along with practical, ready-to-use code examples.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

mikroBasic compiler incorporates a set of built-in functions and procedures. They
are provided to make writing programs faster and easier. You can call built-in
functions and procedures in any part of the program.

Routines SetBit, ClearBit and TestBit are used for bit manipulation. Any SFR
(Special Function Register) or variable of byte type can pass as valid variable
parameter, but constants should be in range [0..7].

Routines Lo, Hi, Higher and Highest extract one byte from the specified parame-
ter. Check the examples for details.

Routines Inc and Dec increment and decrement their argument respectively

Routines Delay_us and Delay_ms create a software delay in duration of COUNT
microseconds or milliseconds, respectively.

Routine Delay_Cyc creates a delay based on MCU clock. Delay lasts for (10 times
the input parameter) in MCU cycles. Input parameter needs to be in range 3 .. 255.

Function Length returns string length.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

107
page

BUILT-IN ROUTINES

Routines sub procedure SetBit(dim byref REG as byte, dim BIT as byte)
sub procedure ClearBit(dim byref REG as byte, dim BIT as byte)
sub function TestBit(dim byref REG as byte, dim BIT as byte) as byte

sub function Lo(dim arg as byte..longint) as byte
sub function Hi(dim arg as word..longint) as byte
sub function Higher(dim arg as longint) as byte
sub function Highest(dim arg as longint) as byte

sub procedure Inc(byref arg as byte..longint)
sub procedure Dec(byref arg as byte..longint)

sub procedure Delay_us(const COUNT as word)
sub procedure Delay_ms(const COUNT as word)
sub procedure Delay_Cyc(dim Cycles_div_by_10 as byte)

sub function Length(dim text as string) as byte

SetBit(PORTB,2)
' set PORTB bit RB2 to value 1

ClearBit(PORTC,7)
' clear PORTC bit RC7

TestBit(PORTA,2)
' returns 1 if PORTA bit RA2 is 1, and 0 if RA2 is 0

Lo(A)
' returns lower byte of variable A
' byte 0, assuming that word/integer comprises bytes 1 and 0,
' and longint comprises bytes 3, 2, 1, and 0

Hi(Aa)
' returns higher byte of variable Aa
' byte 1, assuming that word/integer comprises bytes 1 and 0,
' and longint comprises bytes 3, 2, 1, and 0

Higher(Aaaa)
' returns byte next to the highest byte of variable Aaaa
' byte 2, assuming that longint comprises bytes 3, 2, 1, 0

Highest(Aaaa)
' returns the highest byte of variable Aaaa
' byte 3, assuming that longint comprises bytes 3, 2, 1, 0

Inc(Aaaa)
' increments variable Aaaa by 1

Dec(Aaaa)
' decrements variable Aaaa by 1

Delay_us(100)
' creates software delay equal to 100 microseconds.

Delay_ms(1000)
' creates software delay equal to 1000 milliseconds = 1s.

Delay_Cyc(100)
' creates delay equal to 1000 MCU cycles.

Length(Text)
' returns string length as byte

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

108

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Examples

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Library procedures and functions represent a set of routines. This collection of
functions and procedures is provided for simplifying the initialization and use of
PIC MCU and its hardware modules (ADC, I2C, USART, SPI, PWM), driver for
LCD, drivers for internal and external CAN modules, flexible 485 protocol,
numeric formatting routines...

Currently included libraries:

1wire
ADC
CAN
CANSPI
Compact Flash
Flash Memory
EEPROM
I2C
LCD (4-bit interface)
LCD8 (8-bit interface)
Graphic LCD
PWM
RS485
SPI
USART

Software I2C
Software SPI
Software UART

Sound
Manchester Code
Numeric Formatting Routines
Utilities

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

109
page

LIBRARY ROUTINES

1-wire library provides routines for communicating via 1-wire bus, for example
with DS1820 digital thermometer.

Note that oscillator frequency Fosc needs to be at least 4MHz in order to use the
routines with Dallas digital thermometers.

function OW_Reset(dim byref PORT as byte, dim PIN as byte) as byte
function OW_Read(dim byref PORT as byte, dim PIN as byte) as byte
procedure OW_Write(dim byref PORT as byte, dim PIN, par as byte)

function OW_Reset(dim byref PORT as byte, dim PIN as byte) as byte

Issues 1-wire reset signal for DS1820.
Parameters PORT and pin specify the location of DS1820; return value of the
function is 0 if DS1820 is present, and 1 if it is not present.

function OW_Read(dim byref PORT as byte, dim PIN as byte) as byte

Reads one byte via 1-wire bus.

procedure OW_Write(dim byref PORT as byte, dim PIN, par as byte)

Writes one byte (parameter par) via 1-wire bus.

The following code demonstrates use of 1-wire library procedures and functions.
The example reads the temperature using DS1820 connected to PORTA, pin 5. Be
sure to set the Fosc appropriately in your project.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

110

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

1-Wire Library

Example

Routines

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

program onewire_test

dim i as byte
dim j1 as byte
dim j2 as byte
dim por1 as byte
dim por2 as byte
dim text as char[20]

main:
text = "Temperature:"
PORTB = 0 ' initialize PORTB to 0
PORTA = 255 ' initialize PORTA to 255
TRISB = 0 ' PORTB is output
TRISA = 255 ' PORTA is input
LCD_Init(PORTB)
LCD_Cmd(LCD_CURSOR_OFF)
LCD_Out(1, 1, text)

do
OW_Reset(PORTA,5) ' 1-wire reset signal
OW_Write(PORTA,5,$CC) ' issue command to DS1820
OW_Write(PORTA,5,$44) ' issue command to DS1820
Delay_ms(120)
i = OW_Reset(PORTA,5)
OW_Write(PORTA,5,$CC) ' issue command to DS1820
OW_Write(PORTA,5,$BE) ' issue command to DS1820
Delay_ms(1000)
j1 = OW_Read(PORTA,5) ' get result
j2 = OW_Read(PORTA,5) ' get result
j1 = j1 >> 1 ' assuming the temp. >= 0C
ByteToStr(j1, text) ' convert j1 to text
LCD_Out(2, 8, text) ' print text
LCD_Chr(2, 10, 223) ' degree character (°)
LCD_Chr(2, 11,"C")
Delay_ms(500)

loop until false ' endless loop
end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

111
page

Figure (example of DS1820 on PORTA, pin 5)

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

112

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

+125

-55

OC
DS1820

G
N

D

D
Q

V
dd

4MHz

+5V

E

RS

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

+5V

D7

D6

D5

D4

+5V

L
C

D
c
o
n
tr

a
s
t

+5V

1
R/W D4ERS D3D2D1D0 D7D6D5VeeVddVss

m i k r o e l E k t r o n i k a

4K
7

R
e

s
e

t
1

0
K

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

ADC (Analog to Digital Converter) module is available with a number of PIC
MCU models. Library function ADC_read is included to provide you comfortable
work with the module.

The function is currently unsupported by the following PIC MCU models:
P18F2331, P18F2431, P18F4331, and P18F4431.

You can use the library function to initialize internal AD converter, select channel,
and get the result of conversion:

sub function ADC_Read(dim Channel as byte) as word

It initializes ADC module to work with RC clock. Clock determines the time peri-
od necessary for performing AD conversion (min 12 Tad). RC sources typically
have Tad 4uS (A/D conversion time per bit).

Parameter Channel determines which channel will be sampled. Refer to the device
data sheet for information on device channels.

Before using the function above, be sure to configure the appropriate TRISA bits
to designate the pins as input. Also, configure the desired pin as analog input, and
set Vref (voltage reference value).

The following code demonstrates use of library function ADC_read. Example
reads Channel 2 and stores value in variable temp_res.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

113
page

ADC Library

Routines

Important

Example

program ADC_Test
dim temp_res as word

main:
ADCON1 = $80 ' configure analog inputs and Vref
TRISA = $FF ' PORTA is input
TRISB = $3F ' pins RB7, RB6 are output
TRISD = $0 ' PORTD is output
while true

temp_res = ADC_read(2)
' now you can use temp_res ...

PORTD = temp_res ' send lower 8 bits to PORTD
PORTB = word(temp_res >> 2)

' send two most significant bits to PORTB
wend

end.

Figure (ADC HW connection)

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

114

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

4MHz

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

+5V

LD7

LD6

LD5

LD4

LD3

LD2

LD1

LD0

330R

330R

330R

330R

330R

330R

330R

330R

LB7

LB6

330R

330R1
0

K
R

e
s
e

t

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

CAN (Controller Area Network) module is available with a number of PIC MCU
models. mikroBasic includes a set of library routines to provide you comfortable
work with the module.

CAN routines are currently supported by PIC MCU models P18XXX8.
Microcontroller must be connected to CAN tranceiver (MCP2551 or similar)
which is connected to CAN bus.

The Controller Area Network module is a serial interface, useful for communicat-
ing with other peripherals or microcontrollers. Details about CAN can be found in
appropriate literature and on mikroElektronika Web site.

Following routines can be considered a driver for CAN module on PIC MCUs.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

115
page

CAN Library

sub procedure CANSetOperationMode(dim mode as byte, dim WAIT as byte)

sub function CANGetOperationMode as byte

sub procedure CANInitialize(dim SJW as byte, dim BRP as byte, dim PHSEG1 as byte,
dim PHSEG2 as byte, dim PROPSEG as byte,dim CAN_CONFIG_FLAGS as byte)

sub procedure CANSetBaudRate(dim SJW as byte, dim BRP as byte, dim PHSEG1 as byte,
dim PHSEG2 as byte, dim PROPSEG as byte,dim CAN_CONFIG_FLAGS as byte)

sub procedure CANSetMask(dim CAN_MASK as byte, dim val as longint, dim CAN_CONFIG_FLAGS as byte)

sub procedure CANSetFilter(dim CAN_FILTER as byte, dim val as longint,
dim CAN_CONFIG_FLAGS as byte)

sub function RegsToCANID(dim byref ptr as byte, dim CAN_CONFIG_FLAGS as byte) as longint

sub procedure CANIDToRegs(dim byref ptr as byte, dim val as longint, dim CAN_CONFIG_FLAGS as
byte)

sub function CANwrite(dim id as longint, dim byref Data as byte[8], dim DataLen as byte,
dim CAN_TX_MSG_FLAGS as byte) as byte

sub function CANread(dim byref id as longint, dim byref Data as byte[8],
dim byref DataLen as byte, dim byref CAN_RX_MSG_FLAGS as byte) as byte

sub procedure CANSetOperationMode(dim mode as byte, dim WAIT as byte)

mode - Operation mode code can take any of predefined constant values
(see the constants below)

WAIT - Should have value TRUE(255) or FALSE(0)

CAN is set to requested mode

Given mode byte is copied to CANSTAT

If WAIT is true, this is a blocking call. It won't return until requested mode is set.

If WAIT is false, this is a non-blocking call. It does not verify if CAN module is
switched to requested mode or not. Caller must use CANGetOperationMode() to
verify correct operation mode before performing mode specific operation.

sub function CANGetOperationMode as byte

None

Current operational mode of CAN module is returned

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

116

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Prototype:

Parameters:

Effects:

Overview:

Note:

CANSetOperationMode

CANGetOperationMode

Prototype:

Parameters:

Output:

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

117
page

sub procedure CANInitialize(dim SJW as byte, dim BRP as byte, dim PHSEG1 as
byte, dim PHSEG2 as byte, dim PROPSEG as byte,dim CAN_CONFIG_FLAGS as byte)

CAN must be in Configuration mode or else these values will be ignored.

SJW value as defined in 18XXX8 datasheet (must be between 1 thru 4)
BRP value as defined in 18XXX8 datasheet (must be between 1 thru 64)
PHSEG1 value as defined in 18XXX8 datasheet (must be between 1 thru 8)
PHSEG2 value as defined in 18XXX8 datasheet (must be between 1 thru 8)
PROPSEG value as defined in 18XXX8 datasheet (must be between 1 thru 8)
CAN_CONFIG_FLAGS value is formed from constants (see below)

CAN bit rate is set. All masks registers are set to '0' to allow all messages.

Filter registers are set according to flag value:

If (CAN_CONFIG_FLAGS and CAN_CONFIG_VALID_XTD_MSG) <> 0
Set all filters to XTD_MSG

Else if (config and CONFIG_VALID_STD_MSG) <> 0
Set all filters to STD_MSG

Else

Set half of the filters to STD, and the rest to XTD_MSG.

All pending transmissions are aborted.

CANInitialize

Prototype:

Parameters:

Effects:

Side Effects:

Precondition:

CAN must be in Configuration mode or else these values will be ignored.

SJW value as defined in 18XXX8 datasheet (must be between 1 thru 4)
BRP value as defined in 18XXX8 datasheet (must be between 1 thru 64)
PHSEG1 value as defined in 18XXX8 datasheet (must be between 1 thru 8)
PHSEG2 value as defined in 18XXX8 datasheet (must be between 1 thru 8)
PROPSEG value as defined in 18XXX8 datasheet (must be between 1 thru 8)
CAN_CONFIG_FLAGS - Value formed from constants (see section below)

CAN bit rate is set as per given values.

Given values are bit adjusted to fit in 18XXX8. BRGCONx registers and copied.

sub procedure CANSetMask(dim CAN_MASK as byte, dim val as longint, dim
CAN_CONFIG_FLAGS as byte)

CAN must be in Configuration mode. If not, all values will be ignored.

CAN_MASK - One of predefined constant value
val - Actual mask register value.
CAN_CONFIG_FLAGS - Type of message to filter, either
CAN_CONFIG_XTD_MSG or CAN_CONFIG_STD_MSG

Given value is bit adjusted to appropriate buffer mask registers.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

118

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

CANSetBaudRate

Prototype:

Parameters:

Effects:

Precondition:

Overview:

CANSetMask

Prototype:

Parameters:

Effects:

Precondition:

sub procedure CANSetBaudRate(dim SJW as byte, dim BRP as byte, dim PHSEG1 as
byte,dim PHSEG2 as byte,dim PROPSEG as byte,dim CAN_CONFIG_FLAGS as byte)

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

sub procedure CANSetFilter(dim CAN_FILTER as byte, dim val as longint,
dim CAN_CONFIG_FLAGS as byte)

CAN must be in Configuration mode. If not, all values will be ignored.

CAN_FILTER - One of predefined constant values
val - Actual filter register value.
CAN_CONFIG_FLAGS - Type of message to filter, either
CAN_CONFIG_XTD_MSG or CAN_CONFIG_STD_MSG

Given value is bit adjusted to appropriate buffer filter registers.

sub function RegsToCANID(dim byref ptr as byte, dim CAN_CONFIG_FLAGS as
byte) as longint

sub procedure CANIDToRegs(dim byref ptr as byte, dim val as longint,

CAN_CONFIG_FLAGS as byte)

These two routines are used by other routines (internal purpose only)

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

119
page

CANSetFilter

Prototype:

Parameters:

Effects:

Precondition:

RegsTOCANID and CANIDToRegs

Prototypes:

Effects:

sub function CANwrite(dim id as longint, dim byref Data as byte[8],

dim DataLen as byte, dim CAN_TX_MSG_FLAGS as byte) as byte

CAN must be in Normal mode.

id - CAN message identifier. Only 11 or 29 bits may be used depending on mes-
sage type (standard or extended).
Data - array of bytes up to 8 bytes in length
DataLen - Data length from 1 thru 8.
CAN_TX_MSG_FLAGS - Value formed from constants (see section below)

If at least one empty transmit buffer is found, given message is queued for the
transmission. If none found, FALSE value is returned.

sub function CANread(dim byref id as longint, dim byref Data as byte[8],
dim byref DataLen as byte, dim byref CAN_RX_MSG_FLAGS as byte) as byte

CAN must be in mode in which receiving is possible.

id - CAN message identifier
Data - array of bytes up to 8 bytes in length
DataLen - Data length from 1 thru 8.
CAN_TX_MSG_FLAGS - Value formed from constants (see below)

If at least one full receive buffer is found, it is extracted and returned.
If none found, FALSE value is returned.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

120

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

CANRead

Prototype:

Parameters:

Effects:

Precondition:

CANWrite

Prototype:

Parameters:

Effects:

Precondition:

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

You need to be familiar with constants that are provided for use with CAN library
routines. See how to form values (from constants) that will be passed to or from
routines in the example at the end of the chapter. All of the constants are prede-
fined in CAN library.

These constant values define CAN module operation mode.
CANSetOperationMode() routine requires this code. These values must be used by
itself, i.e. they cannot be ANDed to form multiple values.

const CAN_MODE_BITS = $E0 ' Use these to access opmode bits
const CAN_MODE_NORMAL = 0
const CAN_MODE_SLEEP = $20
const CAN_MODE_LOOP = $40
const CAN_MODE_LISTEN = $60
const CAN_MODE_CONFIG = $80

These constant values define flags related to transmission of a CAN message.
There could be more than one this flag ANDed together to form multiple flags.

const CAN_TX_PRIORITY_BITS = $03
const CAN_TX_PRIORITY_0 = $FC ' XXXXXX00
const CAN_TX_PRIORITY_1 = $FD ' XXXXXX01
const CAN_TX_PRIORITY_2 = $FE ' XXXXXX10
const CAN_TX_PRIORITY_3 = $FF ' XXXXXX11

const CAN_TX_FRAME_BIT = $08
const CAN_TX_STD_FRAME = $FF ' XXXXX1XX
const CAN_TX_XTD_FRAME = $F7 ' XXXXX0XX

const CAN_TX_RTR_BIT = $40
const CAN_TX_NO_RTR_FRAME = $FF ' X1XXXXXX
const CAN_TX_RTR_FRAME = $BF ' X0XXXXXX

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

121
page

CAN Library Constants

CAN_OP_MODE

CAN_TX_MSG_FLAGS

These constant values define flags related to reception of a CAN message. There
could be more than one this flag ANDed together to form multiple flags. If a par-
ticular bit is set; corresponding meaning is TRUE or else it will be FALSE.

e.g.

if (MsgFlag and CAN_RX_OVERFLOW) <> 0 then

' Receiver overflow has occurred.
' We have lost our previous message.
...

const CAN_RX_FILTER_BITS = $07 ' Use these to access filter bits
const CAN_RX_FILTER_1 = $00
const CAN_RX_FILTER_2 = $01
const CAN_RX_FILTER_3 = $02
const CAN_RX_FILTER_4 = $03
const CAN_RX_FILTER_5 = $04
const CAN_RX_FILTER_6 = $05
const CAN_RX_OVERFLOW = $08 ' Set if Overflowed else cleared
const CAN_RX_INVALID_MSG = $10 ' Set if invalid else cleared
const CAN_RX_XTD_FRAME = $20 ' Set if XTD message else cleared
const CAN_RX_RTR_FRAME = $40 ' Set if RTR message else cleared
const CAN_RX_DBL_BUFFERED = $80 ' Set if this message was

' hardware double-buffered

These constant values define mask codes. Routine CANSetMask() requires this
code as one of its arguments. These enumerations must be used by itself i.e. it can-
not be ANDed to form multiple values.

const CAN_MASK_B1 = 0
const CAN_MASK_B2 = 1

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

122

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

CAN_RX_MSG_FLAGS

CAN_MASK

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

These constant values define filter codes. Routine CANSetFilter() requires this
code as one of its arguments. These enumerations must be used by itself i.e. it can-
not be ANDed to form multiple values.

const CAN_FILTER_B1_F1 = 0
const CAN_FILTER_B1_F2 = 1
const CAN_FILTER_B2_F1 = 2
const CAN_FILTER_B2_F2 = 3
const CAN_FILTER_B2_F3 = 4
const CAN_FILTER_B2_F4 = 5

These constant values define flags related to configuring CAN module. Routines
CANInitialize() and CANSetBaudRate() use these codes. One or more these val-
ues may be ANDed to form multiple flags.

const CAN_CONFIG_DEFAULT = $FF ' 11111111

const CAN_CONFIG_PHSEG2_PRG_BIT = $01
const CAN_CONFIG_PHSEG2_PRG_ON = $FF ' XXXXXXX1
const CAN_CONFIG_PHSEG2_PRG_OFF = $FE ' XXXXXXX0

const CAN_CONFIG_LINE_FILTER_BIT = $02
const CAN_CONFIG_LINE_FILTER_ON = $FF ' XXXXXX1X
const CAN_CONFIG_LINE_FILTER_OFF = $FD ' XXXXXX0X

const CAN_CONFIG_SAMPLE_BIT = $04
const CAN_CONFIG_SAMPLE_ONCE = $FF ' XXXXX1XX
const CAN_CONFIG_SAMPLE_THRICE = $FB ' XXXXX0XX

const CAN_CONFIG_MSG_TYPE_BIT = $08
const CAN_CONFIG_STD_MSG = $FF ' XXXX1XXX
const CAN_CONFIG_XTD_MSG = $F7 ' XXXX0XXX

const CAN_CONFIG_DBL_BUFFER_BIT = $10
const CAN_CONFIG_DBL_BUFFER_ON = $FF ' XXX1XXXX
const CAN_CONFIG_DBL_BUFFER_OFF = $EF ' XXX0XXXX

const CAN_CONFIG_MSG_BITS = $60
const CAN_CONFIG_ALL_MSG = $FF ' X11XXXXX
const CAN_CONFIG_VALID_XTD_MSG = $DF ' X10XXXXX
const CAN_CONFIG_VALID_STD_MSG = $BF ' X01XXXXX
const CAN_CONFIG_ALL_VALID_MSG = $9F ' X00XXXXX

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

123
page

CAN_FILTER

CAN_CONFIG_FLAGS

This code demonstrates use of CAN library routines:

program CAN

dim aa as byte
dim aa1 as byte
dim lenn as byte
dim aa2 as byte
dim data as byte[8]
dim id as longint
dim zr as byte
dim cont as byte
dim oldstate as byte

sub function TestTaster as byte
result = true
if Button(PORTB, 0, 1, 0) then

oldstate = 255
end if
if oldstate and Button(PORTB, 0, 1, 1) then

result = false
oldstate = 0

end if
end sub

main:
TRISB.0 = 1 ' designate pin RB0 as input
PORTC = 0
TRISC = 0
PORTD = 0
TRISD = 0
aa = 0
aa1 = 0
aa2 = 0

aa1 = CAN_TX_PRIORITY_0 and ' form value to be used
CAN_TX_XTD_FRAME and ' with CANSendMessage
CAN_TX_NO_RTR_FRAME

aa = CAN_CONFIG_SAMPLE_THRICE and ' form value to be used
CAN_CONFIG_PHSEG2_PRG_ON and ' with CANInitialize
CAN_CONFIG_STD_MSG and
CAN_CONFIG_DBL_BUFFER_ON and
CAN_CONFIG_VALID_XTD_MSG and
CAN_CONFIG_LINE_FILTER_OFF

' continues..

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

124

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

' ..continued

cont = true ' upon signal change on RB0 pin
while cont ' from logical 0 to 1

' proceed with program
cont = TestTaster ' execution

wend

data[0] = 0
CANInitialize(1,1,3,3,1,aa) ' initialize CAN
CANSetOperationMode(CAN_MODE_CONFIG,TRUE) ' set CONFIG mode
ID = -1

CANSetMask(CAN_MASK_B1,ID,CAN_CONFIG_XTD_MSG)
' set all mask1 bits to ones

CANSetMask(CAN_MASK_B2,ID,CAN_CONFIG_XTD_MSG)
' set all mask2 bits to ones

CANSetFilter(CAN_FILTER_B1_F1,3,CAN_CONFIG_XTD_MSG)
' set id of filter B1_F1 to 3

CANSetOperationMode(CAN_MODE_NORMAL,TRUE)
' set NORMAL mode

portd = $FF
id = 12111
CANWrite(id,data,1,aa1) ' send message via CAN

while true
oldstate = 0
zr = CANRead(id , Data , lenn, aa2)
if (id = 3) and zr then

portd = $AA
portc = data[0] ' output data at portC
data[0] = data[0]+1
id = 12111
CANWrite(id,data,1,aa1) ' send incremented data back
if lenn = 2 then ' if msg contains two data bytes

portd = data[1] ' output second byte at portd
end if

end if
wend

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

125
page

Example of interfacing CAN transceiver with MCU and bus

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

126

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

R
X

D
V

re
f

R
S

T
X

-C
A

N

G
N

D

V
C

C

C
A

N
H

C
A

N
L

S
h
ie

ld
e
d

p
a
ir
,
le

s
s

th
a
n

3
0
0
m

lo
n
g

+
5
V

+
5
V

P
IC

1
8
F
4
5
8

R
A

0
/A

N
0
/C

v
re

f

R
A

2
/A

N
2
/V

re
f-

R
A

3
/A

N
3
/V

re
f+

R
A

4
/T

O
C

K
I

R
A

5
/A

N
4
/S

S
/L

V
D

IN

R
E

0
/

R
D

/
A

N
5
/

R
E

1
/

W
R

/C
1
O

U
T

A
N

6
/

R
E

2
/

C
S

/C
2
O

U
T

A
N

7
/

V
d

d

V
s
s

O
S

C
1
/C

L
K

I

O
S

C
2
/C

L
K

O
/R

A
6

R
C

0
/T

1
O

S
O

/T
1
C

K
I

R
C

1
/T

1
O

S
I

R
C

3
/S

C
K

/S
C

L

R
D

0
/P

S
P

0
/C

1
IN

+

R
D

1
/P

S
P

1
/C

1
IN

-

M
C

L
R

/V
p

p

R
C

2
/C

C
P

1

R
A

1
/A

N
1

R
B

7
/P

G
D

R
B

6
/P

G
C

R
B

5
/P

G
M

R
B

4

R
B

3
/C

A
N

R
X

R
B

2
/C

A
N

T
X

/I
N

T
2

R
B

1
/I
N

T
1

R
B

0
/I
N

T
0

V
d

d

V
s
s

R
D

6
/P

S
P

6
/P

1
C

R
D

7
/P

S
P

7
/P

1
D

R
D

5
/P

S
P

5
/P

1
B

R
D

4
/P

S
P

4
/

E
C

C
P

1
/P

1
A

R
C

7
/R

X
/D

T

R
C

6
/T

X
/C

K

R
C

5
/S

D
O

R
C

4
/S

D
I/
S

D
A

R
D

3
/P

S
P

3
/C

2
IN

-

R
D

2
/P

S
P

2
/C

2
IN

+

10K
Reset

+
5
V

+
5
V

P
IC

1
8
F
4
5
8

R
A

0
/A

N
0
/C

v
re

f

R
A

2
/A

N
2
/V

re
f-

R
A

3
/A

N
3
/V

re
f+

R
A

4
/T

O
C

K
I

R
A

5
/A

N
4
/S

S
/L

V
D

IN

R
E

0
/

R
D

/
A

N
5
/

R
E

1
/

W
R

/C
1
O

U
T

A
N

6
/

R
E

2
/

C
S

/C
2
O

U
T

A
N

7
/

V
d

d

V
s
s

O
S

C
1
/C

L
K

I

O
S

C
2
/C

L
K

O
/R

A
6

R
C

0
/T

1
O

S
O

/T
1
C

K
I

R
C

1
/T

1
O

S
I

R
C

3
/S

C
K

/S
C

L

R
D

0
/P

S
P

0
/C

1
IN

+

R
D

1
/P

S
P

1
/C

1
IN

-

M
C

L
R

/V
p

p

R
C

2
/C

C
P

1

R
A

1
/A

N
1

R
B

7
/P

G
D

R
B

6
/P

G
C

R
B

5
/P

G
M

R
B

4

R
B

3
/C

A
N

R
X

R
B

2
/C

A
N

T
X

/I
N

T
2

R
B

1
/I
N

T
1

R
B

0
/I
N

T
0

V
d

d

V
s
s

R
D

6
/P

S
P

6
/P

1
C

R
D

7
/P

S
P

7
/P

1
D

R
D

5
/P

S
P

5
/P

1
B

R
D

4
/P

S
P

4
/

E
C

C
P

1
/P

1
A

R
C

7
/R

X
/D

T

R
C

6
/T

X
/C

K

R
C

5
/S

D
O

R
C

4
/S

D
I/
S

D
A

R
D

3
/P

S
P

3
/C

2
IN

-

R
D

2
/P

S
P

2
/C

2
IN

+

10K
Reset

10R

P
C

A
8
2
C

2
5
0

o
r

M
C

P
2
5
5
1

R
X

D
V

re
f

R
S

T
X

-C
A

N

G
N

D

V
C

C

C
A

N
H

C
A

N
L

10R

+
5
V

+
5
V

P
C

A
8
2
C

2
5
0

o
r

M
C

P
2
5
5
1

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

SPI (Serial Peripheral Interface) module is available with a number of PIC MCU
models. Set of library procedures and functions is listed below to provide comfort-
able work with external CAN modules (such as MCP2515 or MCP2510) via SPI.

CANSPI routines are supported by any PIC MCU model that has SPI interface on
portc. Also, CS pin of MCP2510 or MCP2515 must be connected to RC0 pin.
Example of HW connection is given at the end of the chapter.

The Controller Area Network module is a serial interface, useful for communicat-
ing with other peripherals or microcontrollers. Details about CAN can be found in
appropriate literature and on mikroElektronika Web site. MCP2515 or MCP2510
are modules that enable any chip with SPI interface to communicate over CAN
bus.

Following routines should be considered a driver for CANSPI (CAN via SPI mod-
ule) on PIC MCUs.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

127
page

CANSPI Library

sub procedure CANSPISetOperationMode(dim mode as byte, dim WAIT as byte)

sub function CANSPIGetOperationMode as byte

sub procedure CANSPIInitialize(dim SJW as byte, dim BRP as byte, dim PHSEG1 as byte,
dim PHSEG2 as byte, dim PROPSEG as byte,dim CAN_CONFIG_FLAGS as byte)

sub procedure CANSPISetBaudRate(dim SJW as byte, dim BRP as byte, dim PHSEG1 as byte,
dim PHSEG2 as byte, dim PROPSEG as byte,dim CAN_CONFIG_FLAGS as byte)

sub procedure CANSPISetMask(dim CAN_MASK as byte, dim val as longint, dim CAN_CONFIG_FLAGS as
byte)

sub procedure CANSPISetFilter(dim CAN_FILTER as byte, dim val as longint,
dim CAN_CONFIG_FLAGS as byte)

sub function RegsToCANSPIID(dim byref ptr as byte, dim CAN_CONFIG_FLAGS as byte) as longint

sub procedure CANSPIIDToRegs(dim byref ptr as byte, dim val as longint,
dim CAN_CONFIG_FLAGS as byte)

sub function CANSPIwrite(dim id as longint, dim byref Data as byte[8], dim DataLen as byte,
dim CAN_TX_MSG_FLAGS as byte) as byte

sub function CANSPIread(dim byref id as longint, dim byref Data as byte[8],
dim byref DataLen as byte, dim byref CAN_RX_MSG_FLAGS as byte) as byte

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

128

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

sub procedure CANSPISetOperationMode(dim mode as byte, dim WAIT as byte)

mode - Operation mode code can take any of predefined constant values
(see the constants below)

WAIT - Should have value TRUE(255) or FALSE(0)

CAN is set to requested mode

Given mode byte is copied to CANSTAT

If WAIT is true, this is a blocking call. It won't return until requested mode is set.

If WAIT is false, this is a non-blocking call. It does not verify if CAN module is
switched to requested mode or not. Caller must use CANSPIGetOperationMode()
to verify correct operation mode before performing mode specific operation.

sub function CANSPIGetOperationMode as byte

None

Current operational mode of CAN module is returned

Prototype:

Parameters:

Effects:

Overview:

Note:

CANSPISetOperationMode

CANSPIGetOperationMode

Prototype:

Parameters:

Output:

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

129
page

CAN must be in Configuration mode or else these values will be ignored.

SJW value as defined in 18XXX8 datasheet (must be between 1 thru 4)
BRP value as defined in 18XXX8 datasheet (must be between 1 thru 64)
PHSEG1 value as defined in 18XXX8 datasheet (must be between 1 thru 8)
PHSEG2 value as defined in 18XXX8 datasheet (must be between 1 thru 8)
PROPSEG value as defined in 18XXX8 datasheet (must be between 1 thru 8)
CAN_CONFIG_FLAGS value is formed from constants (see below)

CAN bit rate is set. All masks registers are set to '0' to allow all messages.

Filter registers are set according to flag value:

If (CAN_CONFIG_FLAGS and CAN_CONFIG_VALID_XTD_MSG) <> 0
Set all filters to XTD_MSG

Else if (config and CONFIG_VALID_STD_MSG) <> 0
Set all filters to STD_MSG

Else

Set half of the filters to STD, and the rest to XTD_MSG.

All pending transmissions are aborted.

CANSPIInitialize

Prototype:

Parameters:

Effects:

Side Effects:

Precondition:

sub procedure CANSPIInitialize(dim SJW as byte, dim BRP as byte, dim PHSEG1 as
byte, dim PHSEG2 as byte, dim PROPSEG as byte,dim CAN_CONFIG_FLAGS as byte)

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

130

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

CAN must be in Configuration mode or else these values will be ignored.

SJW value as defined in 18XXX8 datasheet (must be between 1 thru 4)
BRP value as defined in 18XXX8 datasheet (must be between 1 thru 64)
PHSEG1 value as defined in 18XXX8 datasheet (must be between 1 thru 8)
PHSEG2 value as defined in 18XXX8 datasheet (must be between 1 thru 8)
PROPSEG value as defined in 18XXX8 datasheet (must be between 1 thru 8)
CAN_CONFIG_FLAGS - Value formed from constants (see section below)

CAN bit rate is set as per given values.

Given values are bit adjusted to fit in 18XXX8. BRGCONx registers and copied.

sub procedure CANSPISetMask(dim CAN_MASK as byte, dim val as longint, dim
CAN_CONFIG_FLAGS as byte)

CAN must be in Configuration mode. If not, all values will be ignored.

CAN_MASK - One of predefined constant value
val - Actual mask register value.
CAN_CONFIG_FLAGS - Type of message to filter, either
CAN_CONFIG_XTD_MSG or CAN_CONFIG_STD_MSG

Given value is bit adjusted to appropriate buffer mask registers.

CANSPISetBaudRate

Prototype:

Parameters:

Effects:

Precondition:

Overview:

CANSPISetMask

Prototype:

Parameters:

Effects:

Precondition:

sub procedure CANSPISetBaudRate(dim SJW as byte, dim BRP as byte, dim PHSEG1 as
byte, dim PHSEG2 as byte, dim PROPSEG as byte,dim AN_CONFIG_FLAGS as byte)

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

131
page

sub procedure CANSPISetFilter(dim CAN_FILTER as byte, dim val as longint,
dim CAN_CONFIG_FLAGS as byte)

CAN must be in Configuration mode. If not, all values will be ignored.

CAN_FILTER - One of predefined constant values
val - Actual filter register value.
CAN_CONFIG_FLAGS - Type of message to filter, either
CAN_CONFIG_XTD_MSG or CAN_CONFIG_STD_MSG

Given value is bit adjusted to appropriate buffer filter registers.

sub function RegsToCANSPIID(dim byref ptr as byte, dim CAN_CONFIG_FLAGS as
byte) as longint

sub procedure CANSPIIDToRegs(dim byref ptr as byte, dim val as longint, dim

CAN_CONFIG_FLAGS as byte)

These two routines are used by other routines (internal purpose only).

CANSPISetFilter

Prototype:

Parameters:

Effects:

Precondition:

RegsTOCANSPIID and CANSPIIDToRegs

Prototypes:

Effects:

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

132

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

sub function CANSPIwrite(dim id as longint, dim byref Data as byte[8], dim
DataLen as byte, dim CAN_TX_MSG_FLAGS as byte) as byte

CAN must be in Normal mode.

id - CAN message identifier. Only 11 or 29 bits may be used depending on mes-
sage type (standard or extended).
Data - array of bytes up to 8 bytes in length
DataLen - Data length from 1 thru 8.
CAN_TX_MSG_FLAGS - Value formed from constants (see section below)

If at least one empty transmit buffer is found, given message is queued for the
transmission. If none found, FALSE value is returned.

CAN must be in mode in which receiving is possible.

id - CAN message identifier
Data - array of bytes up to 8 bytes in length
DataLen - Data length from 1 thru 8.
CAN_TX_MSG_FLAGS - Value formed from constants (see below)

If at least one full receive buffer is found, it is extracted and returned.
If none found, FALSE value is returned.

CANSPIRead

Prototype:

Parameters:

Effects:

Precondition:

CANSPIWrite

Prototype:

Parameters:

Effects:

Precondition:

sub function CANSPIread(dim byref id as longint, dim byref Data as byte[8],
dim byref DataLen as byte, dim byref CAN_RX_MSG_FLAGS as byte) as byte

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

You need to be familiar with constants that are provided for use with CANSPI
library routines. See how to form values (from constants) that will be passed to or
from routines in the example at the end of the chapter. All of the constants are pre-
defined in CAN library.

For the complete list of constants refer to page 119.

This code demonstrates use of CANSPI library routines.

program CANSPI
dim aa as byte
dim aa1 as byte
dim lenn as byte
dim aa2 as byte
dim data as byte[8]
dim id as longint
dim zr as byte

main:
TRISB = 0
SPI_init ' must be performed before any other activity
TRISC.2 = 0 ' this pin is connected to Reset pin of MCP2510
portc.2 = 0 ' keep MCP2510 in reset state
PORTC.0 = 1 ' make sure that MCP2510 is not selected
TRISC.0 = 0 ' make RC0 output
PORTD = 0
TRISD = 0 ' designate portd as output
aa = 0
aa1 = 0
aa2 = 0
aa = CAN_CONFIG_SAMPLE_THRICE and

CAN_CONFIG_PHSEG2_PRG_ON and
CAN_CONFIG_STD_MSG and
CAN_CONFIG_DBL_BUFFER_ON and
CAN_CONFIG_VALID_XTD_MSG ' prepare flags for

' CANSPIinitialize
PORTC.2 = 1 ' activate MCP2510 chip

' continues..

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

133
page

CAN Library Constants

Example

' ..continued

aa1 = CAN_TX_PRIORITY_BITS and
CAN_TX_FRAME_BIT and
CAN_TX_RTR_BIT

' prepare flags for CANSPIwrite function

CANSPIInitialize(1,2,3,3,1,aa) ' initialize MCP2510

CANSPISetOperationMode(CAN_MODE_CONFIG,true)
' set configuration mode
ID = -1

CANSPISetMask(CAN_MASK_B1,id,CAN_CONFIG_XTD_MSG)
' bring all mask1 bits to ones

CANSPISetMask(CAN_MASK_B2,0,CAN_CONFIG_XTD_MSG)
' bring all mask2 bits to ones

CANSPISetFilter(CAN_FILTER_B1_F1,12111,CAN_CONFIG_XTD_MSG)
' set filter_b1_f1 id to 12111

CANSPISetOperationMode(CAN_MODE_NORMAL,true)
' get back to Normal mode

while true
zr = CANSPIRead(id , Data , len, aa2)
if (id = 12111) and zr then

portd = $AA
portB = data[0]
data[0] = data[0]+1
id = 3
delay_ms(10)
CANSPIWrite(id,data,1,aa1)

if lenn = 2 then
portd = data[1]

end if
end if

wend

end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

134

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Example of interfacing CAN transceiver MCP2551 and MCP2510 with MCU
and bus

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

135
page

+5V

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

4
M

H
z

+5V

PIC16F877A

MCP2510

TX-CAN

CLKOUT

TX0RTS

CS

RST

Vdd

OSC2 INT

RX-CAN

TX1RTS

TX2RTS

OSC1

Vss RX1BF

RX0BF

SCK

SI

SO

8MHz

+5V

+5V

PCA82C250

RXD Vref

RSTX-CAN

GND

VCC

CANH

CANL+5V

Shielded pair, less

than 300m long

1
0

R

1
0

K

1
0

0
K

1
0

0
K

1
0

0
K

R
e
s
e
t

Compact Flash Library provides routines for accessing data on Compact Flash
card (abbrev. CF further in text). CF cards are widely used memory elements,
commonly found in digital cameras. Great capacity (8MB ~ 2GB, and more) and
excellent access time of typically few microseconds make them very attractive for
microcontroller applications.

Following routines can be used for CF with FAT16, and FAT32 file system. Note
that routines for file handling can be used only with FAT16 file system.

File accessing routines can write file up to 128KB in size. File names must be
exactly 8 characters long and written in uppercase. User must ensure different
names for each file, as CF routines will not check for possible match.

In CF card, data is divided into sectors, one sector usually comprising 512 bytes
(few older models have sectors of 256B). Read and write operations are not per-
formed directly, but successively through 512B buffer. Before write operation,
make sure you don't overwrite boot or FAT sector as it could make your card on
PC or digital cam unreadable. Drive mapping tools, such as Winhex, can be of a
great assistance.

Following routines implement data and file access to Compact Flash:

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

136

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Compact Flash Library

sub procedure CF_INIT_PORT(dim byref CtrlPort as byte, dim byref DataPort as byte)
sub function CF_DETECT(dim byref CtrlPort as byte) as byte
sub procedure CF_WRITE_INIT(dim byref CtrlPort as byte, dim byref DataPort as byte,

dim Adr as longint, dim SectCnt as byte)
sub procedure CF_WRITE_BYTE(dim byref CtrlPort as byte, dim byref DataPort as byte,

dim BData as byte)
sub procedure CF_WRITE_WORD(dim byref CtrlPort as byte, dim byref DataPort as byte,

dim WData as word)
sub procedure CF_READ_INIT(dim byref CtrlPort as byte, dim byref DataPort as byte,

dim Adr as longint, dim SectCnt as byte)
sub function CF_READ_BYTE(dim byref CtrlPort as byte, dim byref DataPort as byte) as byte
sub function CF_READ_WORD(dim byref CtrlPort as byte, dim byref DataPort as byte) as word
sub procedure CF_SET_REG_ADR(dim byref CtrlPort as byte, dim adr as byte)

sub procedure CF_File_Write_Init(dim byref CtrlPort as byte, dim byref DataPort as byte)
sub procedure CF_File_Write_Byte(dim byref CtrlPort as byte, dim byref DataPort as byte,

dim Bdata as byte)
sub procedure CF_File_Write_Complete(dim byref CtrlPort as byte, dim byref DataPort as byte,

dim byref Filename as char[9])

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

137
page

sub procedure CF_INIT_PORT(dim byref CtrlPort as byte, dim byref DataPort

as byte)

None.

CtrlPort is control port, DataPort is data port to which CF is attached.

Initializes ports appropriately.

sub function CF_DETECT(dim byref CtrlPort as byte) as byte

CtrlPort must be initialized (call CF_INIT_PORT first).

Check for presence of CF.

Returns TRUE if CF is present, otherwise returns FALSE.

sub procedure CF_WRITE_INIT(dim byref CtrlPort as byte, dim byref DataPort

as byte, dim Adr as longint, dim SectCnt as byte)

Ports must be initialized.

CtrlPort - control port , DataPort - data port , Adr - specifies sector address from
where data will be written, SectCnt - parameter is total number of sectors prepared
for write.

Initializes CF card for write operation.

CF_INIT_PORT

Prototype:

Parameters:

Effects:

Precondition:

CF_DETECT

Prototype:

Effects:

Output:

Precondition:

CF_WRITE_INIT

Prototype:

Parameters:

Effects:

Precondition:

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

138

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

sub procedure CF_WRITE_BYTE(dim byref CtrlPort as byte, dim byref DataPort

as byte, dim BData as byte)

Ports must be initialized, CF must be initialized for write operation (see
CF_WRITE_INIT).

CtrlPort - control port , DataPort - data port , dat - is data byte written to CF.

Write 1 byte to CF. This procedure has effect if writing is previously initialized,
and all 512 bytes are transferred to a buffer.

sub procedure CF_WRITE_WORD(dim byref CtrlPort as byte, dim byref DataPort

as byte, dim WData as word)

Ports must be initialized, CF must be initialized for write operation (see
CF_WRITE_INIT).

CtrlPort - control port , DataPort - data port , dat - is data word written to CF.

Writes 1 word to CF. This procedure has effect if writing is previously initialized,
and all 512 bytes are transferred to a buffer.

sub procedure CF_READ_INIT(dim byref CtrlPort as byte, dim byref DataPort

as byte, dim Adr as longint, dim SectCnt as byte)

Ports must be initialized.

CtrlPort - control port , DataPort - data port , Adr - specifies sector address from
where data will be read, SectCnt - parameter is total number of sectors prepared
for read operations.

This procedure initializes CF card for write operation.

CF_WRITE_BYTE

Prototype:

Parameters:

Effects:

Precondition:

CF_WRITE_WORD

Prototype:

Parameters:

Effects:

Precondition:

CF_READ_INIT

Prototype:

Parameters:

Effects:

Precondition:

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

139
page

sub function CF_READ_BYTE(dim byref CtrlPort as byte, dim byref DataPort

as byte) as byte

Ports must be initialized, CF must be initialized for read operation (see
CF_READ_INIT).

CtrlPort - control port , DataPort - data port.

Read 1 byte from CF.

sub function CF_READ_WORD(dim byref CtrlPort as byte, dim byref DataPort

as byte) as word

Ports must be initialized, CF must be initialized for read operation (see
CF_READ_INIT).

CtrlPort - control port , DataPort - data port.

Read 1 word from CF.

sub procedure CF_SET_REG_ADR(dim byref CtrlPort as byte, dim adr as byte)

This procedure is for internal use only.

CF_READ_BYTE

CF_READ_WORD

Prototype:

Parameters:

Effects:

Precondition:

Prototype:

Parameters:

Effects:

Precondition:

CF_SET_REG_ADR

Prototype:

Effects:

procedure CF_File_Write_Init(dim byref CtrlPort as byte,

dim byref DataPort as byte)

Ports must be initialized, CF must be initialized for read operation (see
CF_READ_INIT).

CtrlPort - control port, DataPort - data port.

This procedure initializes CF card for file writing operation (FAT16 only).

procedure CF_File_Write_Byte(dim byref CtrlPort as byte,
dim byref DataPort as byte, dim Bdata as byte)

Ports must be initialized, CF must be initialized for write operation (see
CF_File_Write_Init).

CtrlPort - control port, DataPort - data port, Bdata - data byte to be written.

This procedure adds one byte (<Bdata>) to file.

procedure CF_File_Write_Complete(dim byref CtrlPort as byte,
dim byref DataPort as byte, dim byref Filename as char[9])

CtrlPort - control port, DataPort - data port, Filename (must be in uppercase and
must have exactly 8 characters).

Upon all data has be written to file, use this procedure to close the file and make it
readable by Windows.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

140

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

CF_FILE_WRITE_INIT

Prototype:

Parameters:

Effects:

Precondition:

CF_FILE_WRITE_BYTE

Prototype:

Parameters:

Effects:

Precondition:

CF_FILE_WRITE_BYTE

Prototype:

Parameters:

Effects:

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

This code demonstrates use of CF library procedures and functions.

program CompactFlash

dim i as word
dim temp as longint
dim k as longint

main:
TRISC = 0 ' designate portc as output
CF_INIT_PORT(PORTB,PORTD) ' initialize ports

do
nop

loop until CF_DETECT(PORTB) = true
' wait until CF card is inserted

Delay_ms(500)

CF_WRITE_INIT(PORTB, PORTD, 590, 1)
' Initialize write at sector address 590
' of 1 sector (512 bytes)

for i = 0 to 511 ' write 512 bytes to sector (590)
CF_WRITE_BYTE(PORTB,PORTD,i+11)

next i

PORTC = $FF
Delay_ms(1000)

CF_READ_INIT(PORTB, PORTD, 590, 1)
' Initialize write at sector address 590
' of 1 sector (512 bytes)

for i = 0 to 511 ' read 512 bytes from sector (590)
PORTC = CF_READ_BYTE(PORTB, PORTD)

' read byte and display on portc
Delay_ms(1000)

next i

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

141
page

Example

program CompactFlash_File

dim i1 as word
dim index as byte
dim Fname as string[9]

sub procedure Init
TRISC = 0 ' designate portc as output
CF_Init_Port(PORTB,PORTD) ' initialize ports

do
nop

loop until CF_DETECT(PORTB) = true ' wait until CF card is inserted
Delay_ms(50) ' wait for until the card stabilizes
end sub

main:

index = 0 ' index of file to be written
while index < 5

portc = 0
Init
portc = index
CF_File_Write_Init(PORTB,PORTD) ' initialization for writing

' to new file
i1 = 0
while i1 < 50000

CF_File_Write_Byte(PORTB,PORTD,48+index) ' writes 50000
' bytes to file

inc(i1)
wend
Fname = "RILEPROX" ' must be 8 character long in upper case
fname[8] = 48 + index ' ensure that files have different name
CF_File_Write_Complete(PORTB,PORTD, Fname) ' close the file
Inc(index)

wend
PORTC = $FF

end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

142

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Figure: Pin diagram of Compact Flash memory card

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

143
page

+
5
V

C
o
m

p
a
c
t

F
la

s
h

C
o
n
n
e
c
to

r

(T
O

P
V

IE
W

)

C
o
m

p
a
c
t

F
la

s
h

C
a
rd

1234567891
0

111
2

1
3

1
4

1
5

1
62
5 2
1

2
22
3

2
4

1
7

1
81
9

2
0

2
6

2
7

2
8

2
93
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
15
0 4
6

4
74
8

4
9

4
2

4
34
4

4
5

4
M

H
z

+
5
V

+
5
V

P
IC

1
6
F
8
7
7
A

R
A

0
/A

N
0

R
A

2
/A

N
2

/V
re

f-

R
A

3
/A

N
3

/V
re

f+

R
A

4
/T

O
C

K
I

R
A

5
/A

N
4

R
E

0
/R

D
/A

N
5

R
E

1
/W

R
/A

N
6

R
E

2
/C

S
/A

N
7

V
d

d

V
s
s

O
S

C
1

O
S

C
2

R
C

O
/T

1
O

S
O

R
C

1
/T

1
O

S
I

R
C

3

R
D

0
/P

S
P

0

R
D

1
/P

S
P

1

M
C

L
R

/V
p

p
/T

H
V

R
C

2
/C

C
P

1

R
A

1
/A

N
1

R
B

7
/P

G
D

R
B

6
/P

G
C

R
B

5

R
B

4

R
B

3
/P

G
M

R
B

2

R
B

1

R
B

0
/I

N
T

V
d

d

V
s
s

R
D

6
/P

S
P

6

R
D

7
/P

S
P

7

R
D

5
/P

S
P

5

R
D

4
/P

S
P

4

R
C

7
/R

X
/D

T

R
C

6
/T

X
/C

K

R
C

5

R
C

4

R
D

3
/P

S
P

3

R
D

2
/P

S
P

2

10K
Reset

+
5
V

10K

EEPROM data memory is available with a number of PIC MCU models. Set of
library procedures and functions is listed below to provide you comfortable work
with EEPROM.

Basically, there are two operations that can be performed on EEPROM data mem-
ory.

function EEprom_Read(dim Address as byte) as byte

procedure EEprom_Write(dim Address as byte, dim Data as byte)

Library function EEprom_Read reads data from specified Address, while the
library procedure EEprom_Write writes Data to specified Address.

Parameter Address is of byte type, which means it can address only 256 locations.
For PIC18 MCU models with more EEPROM data locations, it is programmer's
responsibility to set SFR EEADRH register appropriately.

program EEPROMtest
dim i as byte
dim j as byte

main:
TRISB = 0
for i = 0 to 20
EEprom_write(i,i+6)

next i

for i = 0 to 20
PORTB = EEprom_read(i)
for j = 0 to 200

delay_us(500)
next j

next i
end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

144

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

EEPROM Library

Routines

Note

Example

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

I2C (Inter Integrated Circuit) full master MSSP (Master Synchronous Serial Port)
module is available with a number of PIC MCU models. Set of library procedures
and functions is listed below to support the master I2C mode.

Note that these functions support module on PORTC, and won't work with mod-
ules on other ports. Examples for PIC MCUs with module on other ports can be
found in your mikroBasic installation folder, subfolder 'examples'.

I2C interface is serial interface used for communicating with peripheral or other
microcontroller devices. All functions and procedures bellow are intended for PIC
MCUs with MSSP module. By using these, you can configure and use PIC MCU
as master in I2C communication.

sub procedure I2C_Init(const clock as longint)
sub function I2C_Is_Idle as byte
sub function I2C_Start as byte
sub procedure I2C_Repeated_Start
sub function I2C_Wr(dim Data as byte) as byte
sub function I2C_Rd(dim Ack as byte) as byte
sub procedure I2C_Stop as byte

sub procedure I2C_Init(const clock as longint)

Parameter clock is a desired I2C clock (refer to device data sheet for correct values
in respect with Fosc).

Example:

I2C_init(100000)

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

145
page

I2C Library

Important

Routines

After configuring the I2C master mode, you have the following functions and pro-
cedures at your disposal:

sub function I2C_Start as byte

Determines if I2C bus is free and issues START condition; if there is no error,
function returns 0.

sub procedure I2C_Repeated_Start

Performs repeated start condition.

sub function I2C_Wr(dim Data as byte) as byte

After you have issued a start or repeated start you can send data byte via I2C bus;
this function also returns 0 if there is no errors.

sub function I2C_Rd(dim Ack as byte) as byte

Receives 1 byte from the slave; and sends not acknowledge signal if parameter
Ack is 0 in all other cases it sends acknowledge.

sub procedure I2C_Stop as byte

Issues STOP condition.

The following code demonstrates use of I2C Library procedures and functions.
PIC MCU is connected (SCL,SDA pins) to 24c02 EEPROM. Program sends data
to EEPROM (data is written at address 2). Then, we read data via I2C from EEP-
ROM and send its value to PORTD, to check if the cycle was successful. See the
following figure on how to interface 24c02 to PIC.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

146

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

Example

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

' Example of communication with 24c02 EEPROM

program BasicI2c

dim EE_adr as byte
dim EE_data as byte
dim jj as word

main:
I2C_init(100000) ' initialize full master mode
TRISD = 0 ' designate portd as output
PORTD = $ff ' initialize portd
I2C_Start ' issue I2C start signal
I2C_Wr($a2) ' send byte via I2C(command to 24cO2)
EE_adr = 2
I2C_Wr(EE_adr) ' send byte(address for EEPROM)
EE_data = $aa
I2C_Wr(EE_data) ' send data to be written
I2C_Stop ' issue I2C stop signal

for jj = 0 to 65500 ' pause while EEPROM writes data
nop

next i

I2C_Start ' issue I2C start signal
I2C_Wr($a2) ' send byte via I2C
EE_adr = 2
I2C_Wr(EE_adr) ' send byte(address for EEPROM)
I2C_Repeated_Start ' issue I2Csignal repeated start
I2C_Wr($a3) ' send byte(request data from EEPROM)
EE_data = I2C_rd(1) ' Read the data
I2C_Stop ' issue I2C stop signal
PORTD = EE_data ' show data on PORTD

noend: ' endless loop
goto noend

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

147
page

Figure: I2C interfacing EEPROM 24C04 to PIC MCU

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

148

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

4
M

H
z

+5V

+5V

1

2

3

4

8

7

6

5

A0

A1

NC

GND

Vcc

WP

SCL

SDA

24C04

+5V

+5V
PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

1
0
K

1
0
K

1
0
K

R
e
s
e
t

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

mikroBasic provides a set of library procedures and functions for communicating
with commonly used 4-bit interface LCD (with Hitachi HD44780 controller).
Figure showing HW connection of PIC and LCD is given at the bottom of the
page (if you need different pin settings, refer to LCD_Config routine).

Be sure to designate port with LCD as output, before using any of the following
library routines.

sub procedure LCD_Config(dim byref Port as byte, const RS,
const EN, const WR, const D7,
const D6, const D5, const D4)

Initializes LCD at <Port> with pin settings you specify:
parameters <RS>, <EN>, <WR>, <D7> .. <D4> need to be a combination of
values 0..7 (e.g. 3,6,0,7,2,1,4).

sub procedure LCD_Init(dim byref Port as byte)

Initializes LCD at <Port> with default pin settings (check the figures at the end of
the chapter).

sub procedure LCD_Out(dim Row as byte, dim Column as byte,
dim byref Text as char[255])

Prints <Text> (string variable) at specified row and column on LCD. Both string
variables and string constants can be passed.

sub procedure LCD_Out_CP(dim byref Text as char[255])

Prints <Text> (string variable) at current cursor position. Both string variables and
string constants can be passed.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

149
page

LCD Library

Note

Routines

sub procedure LCD_Chr(dim Row as byte, dim Column as byte,
dim Character as byte)

Prints <Character> at specified row and column on LCD.

sub procedure LCD_Chr_CP(dim Character as byte)

Prints <Character> at current cursor position.

sub procedure LCD_Cmd(dim Command as byte)

Sends command <Command> to LCD. Refer to the following list of available
commands.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

150

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

LCD
Commands

Command Purpose

LCD_First_Row Moves cursor to 1st row

LCD_Second_Row Moves cursor to 2nd row

LCD_Third_Row Moves cursor to 3rd row

LCD_Fourth_Row Moves cursor to 4th row

LCD_Clear Clears display

LCD_Return_Home
Returns cursor to home position, returns a shifted
display to original position.
Display data RAM is unaffected

LCD_Cursor_Off Turns off cursor

LCD_Underline_On Underline cursor on

LCD_Blink_Cursor_On Blink cursor on

LCD_Move_Cursor_Left Move cursor left without changing display data RAM

LCD_Move_Cursor_Right Move cursor right without changing display data RAM

LCD_Turn_On Turn LCD display on

LCD_Turn_Off Turn LCD display off

LCD_Shift_Left Shift display left without changing display data RAM

LCD_Shift_Right Shift display right without changing display data RAM

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Here are several examples of LCD routine calls:

LCD_Config(PORTD,0,1,2,6,5,4,3)
' Initializes LCD on PORTD with custom pin settings
' (4-bit interface).

LCD_Init(PORTB)
' Initializes LCD on PORTB with default pin settings
' (4-bit interface).

LCD_Out(1,1,txt)
' Prints string variable <txt> on LCD (1st row, 1st column).

LCD_Out_CP(txt)
' Prints string variable <txt> at current cursor position.

LCD_Char(1,1,"e")
' Prints character "e" on LCD (1st row, 1st column).

LCD_Char_CP("f")
' Prints character "f" at current cursor position.

LCD_Cmd(LCD_Clear)
' Sends command LCD_Clear to LCD (clears LCD display).

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

151
page

Example

Use LCD_Init for default pin settings (see the figure below).

program LCD_default_test

main:
TRISB = 0 ' PORTB is output
LCD_Init(PORTB) ' Initialize LCD at PORTB
LCD_Cmd(LCD_CURSOR_OFF) ' Turn off cursor
LCD_Out(1, 1, "mikroelektronika") ' Print Text at LCD

end.

LCD HW connection by default initialization (using LCD_Init). If you need differ-
ent pin settings, refer to LCD_Config routine.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

152

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

1
R/W D4ERS D3D2D1D0 D7D6D5VeeVddVss

+5V

L
C

D
c
o

n
tr

a
s
t

PIN1 PIN7PIN0 PIN6PIN5PIN4PIN3PIN2

PIC MCU

any port (with 8 pins)

PIC

PIN7

PIN6

PIN5

PIN4

PIN3

PIN2

PIN1

PIN0

LCD

D7

D6

D5

D4

RS

E

m i k r o e l E k t r o n i k a

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Alternatively, you can use LCD_Config for custom pin settings. For example:

program LCD_custom_test

main:
TRISD = 0 ' PORTD is output

' Initialize LCD at portd with custom pin settings (figure)
LCD_Config(PORTD,1,2,0,3,5,4,6)
LCD_Cmd(LCD_CURSOR_OFF) ' Turn off cursor
LCD_Out(1, 1, "mikroelektronika") ' Print text at LCD

end.

LCD HW custom connection (using LCD_Config, see the example above).

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

153
page

1
R/W D4ERS D3D2D1D0 D7D6D5VeeVddVss

+5V

L
C

D
c
o

n
tr

a
s
t

PIN1 PIN7PIN0 PIN6PIN5PIN4PIN3PIN2

PIC MCU

any port (with 8 pins)

PIC

PIN7

PIN6

PIN5

PIN4

PIN3

PIN2

PIN1

PIN0

LCD

D7

D6

D5

D4

RS

E

m i k r o e l E k t r o n i k a

mikroPascal provides a set of library procedures and functions for communicating
with commonly used 8-bit interface LCD (with Hitachi HD44780 controller).
Figure showing HW connection of PIC and LCD is given on the following page
(if you need different pin settings, refer to LCD8_Config routine).

Be sure to designate port with LCD as output, before using any of the following
library routines.

sub procedure LCD8_Config(dim byref portCtrl as byte,
dim byref portData as byte, const RS, const EN, const WR,
const D7, const D6, const D5, const D4, const D3, const D2,
const D1, const D0)

Initializes LCD at <portCtrl> and <portData> with pin settings you specify:
parameters <RS>, <EN>, <WR> need to be in range 0..7;
parameters <D7> .. <D0> need to be a combination of values 0..7
(e.g. 3,6,5,0,7,2,1,4).

sub procedure LCD8_Init(dim byref portCtrl as byte,
dim byref portData as byte)

Initializes LCD at <portCtrl> and <portData> with default pin settings (check
the figures at the end of the chapter).

sub procedure LCD8_Out(dim Row as byte, dim Column as byte,
dim byref Text as char[255])

Prints <Text> (string variable) at specified row and column on LCD. Both string
variables and string constants can be passed.

sub procedure LCD8_Out_CP(dim byref Text as char[255])

Prints <Text> (string variable) at current cursor position. Both string variables and
string constants can be passed.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

154

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

LCD8 Library (8-bit interface LCD)

Routines

Note

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

sub procedure LCD8_Chr(dim Row as byte, dim Column as byte,
dim Character as byte)

Prints <Character> at specified row and column on LCD.

sub procedure LCD8_Chr_CP(dim Character as byte)

Prints <Character> at current cursor position.

sub procedure LCD8_Cmd(dim Command as byte)

Sends command <Command> to LCD. Refer to page 150 for the complete list of
available LCD commands.

Here are several examples of LCD8 routine calls:

LCD8_Config(PORTC,PORTD,0,1,2,6,5,4,3,7,1,2,0)
' Initializes LCD on PORTC and PORTD with custom pin settings
' (8-bit interface).

LCD8_Init(PORTB,PORTC)
' Initializes LCD on PORTB and PORTC with default pin settings
' (8-bit interface).

LCD8_Out(1,1,txt)
' Prints string variable <txt> on LCD (1st row, 1st column).

LCD8_Out_CP(txt)
' Prints string variable <txt> at current cursor position.

LCD8_Char(1,1,"e")
' Prints character "e" on LCD (1st row, 1st column).

LCD8_Char_CP("f")
' Prints character "f" at current cursor position.

LCD8_Cmd(LCD_Clear)
' Sends command LCD_Clear to LCD (clears LCD display).

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

155
page

Example

Use LCD8_Init for default pin settings (see the figure below).

program LCD8_test

dim Text as char[17]

main:
TRISB = 0 ' Portb is output
TRISC = 0 ' Portc is output
LCD8_Init(portb, portc) ' Initialize LCD at portb and portc
LCD8_Cmd(LCD_CURSOR_OFF) ' Turn off cursor
Text = "mikroElektronika"
LCD8_Out(1, 1, Text) ' Print text at LCD

end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

156

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

1
R/W D4ERS D3D2D1D0 D7D6D5VeeVddVss

+5V

L
C

D
c
o

n
tr

a
s
t

PIN1 PIN7PIN0 PIN6PIN5PIN4PIN3PIN2

PIC MCU

any port (with 8 pins)

m i k r o e l E k t r o n i k a

Data PortControl Port

PIN0 PIN3PIN2

RS

E

R/W

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Alternatively, you can use LCD8_Config to set custom pin settings. For example:

program LCD8_custom_test

dim Text as char[17]

main:
TRISB = 0 ' Portb is output
TRISD = 0 ' Portd is output
' Initialize LCD at portb and portd
LCD8_Config(PORTB,PORTD,2,3,0,7,6,5,4,3,2,1,0)
LCD8_Cmd(LCD_CURSOR_OFF) ' Turn off cursor
Text = "mikroElektronika"
LCD8_Out(1, 1, Text) ' Print text at LCD

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

157
page

1
R/W D4ERS D3D2D1D0 D7D6D5VeeVddVss

+5V

L
C

D
c
o

n
tr

a
s
t

PIN1 PIN7PIN0 PIN6PIN5PIN4PIN3PIN2

PIC MCU

any port (with 8 pins)

m i k r o e l E k t r o n i k a

Data PortControl Port

PIN0 PIN3PIN2

RS

E

R/W

mikroBasic provides a set of library procedures and functions for drawing and
writing on Graphical LCD. Also it is possible to convert bitmap (use menu option
Tools > BMP2LCD) to constant array and display it on GLCD. These routines
work with commonly used GLCD 128x64, and work only with the PIC18 family.

Be sure to designate ports with GLCD as output, before using any of the following
library procedures or functions.

sub procedure GLCD_Init(dim Ctrl_Port as byte,

dim Data_Port as byte)

Initializes LCD at <Ctrl_Port> and <Data_Port>.

sub procedure GLCD_Config(dim byref Ctrl_Port as byte,
dim byref Data_Port as byte, dim Reset as byte,
dim Enable as byte, dim RS as byte, dim RW as byte,
dim CS1 as byte, dim CS2 as byte)

Initializes LCD at <Ctrl_Port> and <Data_Port> with custom pin settings. For
example: GLCD_Config(portb, portc, 1,7,4,6,0,2).

sub procedure GLCD_Put_Ins(dim ins as byte)

Sends instruction <ins> to GLCD. Available instructions include:

X_ADRESS = $B8 ' Adress base for Page 0
Y_ADRESS = $40 ' Adress base for Y0
START_LINE = $C0 ' Adress base for line 0
DISPLAY_ON = $3F ' Turn display on
DISPLAY_OFF = $3E ' Turn display off

sub procedure GLCD_Put_Data(dim data as byte)

Sends data byte to GLCD.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

158

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Graphic LCD Library

Note

Routines

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

sub procedure GLCD_Put_Data2(dim data as byte,

dim side as byte)

Sends data byte to GLCD at specified <side>.

sub procedure GLCD_Select_Side(dim LCDSide as byte)

Selects the side of the GLCD:
' const RIGHT = 0

' const LEFT = 1

sub function GLCD_Data_Read as byte

Reads data from GLCD.

sub procedure GLCD_Set_Dot(dim x as byte, dim y as byte)

Draws a dot on the GLCD.

sub procedure GLCD_Clear_Dot(dim x as byte, dim y as byte)

Clears a dot on the GLCD.

sub procedure GLCD_Circle(dim CenterX as integer,

dim CenterY as integer, dim Radius as integer)

Draws a circle on the GLCD, centered at <CenterX, CenterY> with <Radius>.

sub procedure GLCD_Line(dim x1 as integer, dim y1 as integer,

dim x2 as integer, dim y2 as integer)

Draws a line from (x1,y1) to (x2,y2).

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

159
page

sub procedure GLCD_Invert(dim Xaxis as byte, dim Yaxis as byte)

Procedure inverts display (changes dot state on/off) in the specified area, X pixels
wide starting from 0 position, 8 pixels high. Parameter X spans 0..127, parameter
Y spans 0..7 (8 text lines).

sub procedure GLCD_Goto_XY(dim x as byte, dim y as byte)

Sets cursor to dot (x,y). Procedure is used in combination with GLCD_Put_Data,
GLCD_Put_Data2, and GLCD_Put_Char.

sub procedure GLCD_Put_Char(dim Character as byte)

Prints <Character> at cursor position.

sub procedure GLCD_Clear_Screen

Clears the GLCD screen.

sub procedure GLCD_Put_Text(dim x_pos as word, dim y_pos as word,

dim byref text as char[25], dim invert as byte)

Prints <text> at specified position; y_pos spans 0..7.

sub procedure GLCD_Rectangle(dim X1 as byte, dim Y1 as byte,

dim X2 as byte, dim Y2 as byte)

Draws a rectangle on the GLCD. (x1,y1) sets the upper left corner, (x2,y2) sets the
lower right corner.

sub procedure GLCD_Set_Font(dim font_index as byte)

Sets font for GLCD. Parameter <font_index> spans from 1 to 4, and determines
which font will be used: 1: 5x8 dots, 2: 5x7 dots, 3: 3x6 dots, 4: 8x8 dots.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

160

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

program GLCDDemo

include "GLCD_128x64.pbas"

dim text as string[25]
dim j as byte
dim k as byte

main:
PORTC = 0
PORTB = 0
PORTD = 0
TRISC = 0
TRISD = 0
TRISB = 0

GLCD_LCD_Init(PORTC, PORTD) ' default settings
GLCD_Set_Font(FONT_NORMAL1)

while true
' Draw Circles
GLCD_Clear_Screen
text = "Circle"
GLCD_Put_Text(0, 7, text, NONINVERTED_TEXT)
GLCD_Circle(63,31,20)
Delay_Ms(4000)

' Draw rectangles
GLCD_Clear_Screen
text = "Rectangle"
GLCD_Put_Text(0, 7, text, NONINVERTED_TEXT)
GLCD_Rectangle(10, 0, 30, 35)
Delay_Ms(4000)
GLCD_Clear_Screen

' Draw Lines
GLCD_Clear_Screen
text = "Line"
GLCD_Put_Text(55, 7, text, NONINVERTED_TEXT)
GLCD_Line(0, 0, 127, 50)
GLCD_Line(0, 63, 50, 0)
Delay_Ms(5000)

{ continued.. }

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

161
page

Example

{ ..continued }

' Fonts DEMO
GLCD_Clear_Screen
text = "Fonts DEMO"
GLCD_Set_Font(FONT_TINY)
GLCD_Put_Text(0, 4, text, NONINVERTED_TEXT)
GLCD_Put_Text(0, 5, text, INVERTED_TEXT)
GLCD_Set_Font(FONT_BIG)
GLCD_Put_Text(0, 6, text, NONINVERTED_TEXT)
GLCD_Put_Text(0, 7, text, INVERTED_TEXT)
Delay_ms(5000)

wend
end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

162

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

118
K

G
N

D

V
c
c

V
e

e

R
S

R
/W

ED
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

+ 5V

10k

10

KS0108 GLCD Test

"Hello world"

mikroElektronika

C
S

2

R
E

S
E

T

V
O

U
T

C
S

1

GND

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

CCP (Capture/ Compare/ PWM) module is available with a number of PIC MCU
models. Set of library procedures and functions is listed below to provide comfort-
able work with PWM (Pulse Width Modulation).

Note that these routines support module on PORTC pin RC2, and won't work with
modules on other ports. Also, mikroBasic doesn't support enhanced PWM mod-
ules. Examples for PIC MCUs with module on other ports can be found in your
mikroBasic installation folder, subfolder 'examples'.

sub procedure PWM_Init(const PWM_Freq)
sub procedure PWM_Change_Duty(dim New_Duty as byte)
sub procedure PWM_start
sub procedure PWM_stop

procedure PWM_Init(const PWM_Freq);

Initializes the PWM module. It starts with (duty ratio) 0%.
Parameter PWM_Freq is a desired PWM frequency (refer to device data sheet for
correct values in respect with Fosc).

Example: PWM_Init(5000);

sub procedure PWM_Change_Duty(dim New_Duty as byte)

Parameter New_Duty (duty ratio) takes values from 0 to 255, where 0 is 0% duty
ratio, 127 is 50% duty ratio, and 255 is 100% duty ratio. Other values for specific
duty ratio can be calculated as (Percent*255)/100.

sub procedure PWM_start

Starts PWM.

sub procedure PWM_stop

Stops PWM.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

163
page

PWM Library

Note

Routines

This code demonstrates use of PWM library procedures and functions. If pin RC2
is connected to LED diode, light emitted will depend of PWM duty ratio and this
change can be noticed.

program PWMtest

dim j as byte

main:
j = 0
PORTC = $FF
PWM_init(5000) ' initializes PWM module, freq = 5kHz
PWM_start ' starts PWM
while true

delay_ms(100)
j = j + 1
PWM_change_duty(j) ' changes duty ratio

wend
end.

Figure: PWM demonstration

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

164

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

4MHz

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

330R

1
0

K
R

e
s
e

t

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

165
page

RS485 is a multipoint communication which allows multiple devices to be con-
nected to a single signal cable. mikroBasic provides a set of library routines to
provide you comfortable work with RS485 system using Master/Slave architec-
ture.

Master and Slave devices interchange packets of information, each of these pack-
ets containing synchronization bytes, CRC byte, address byte, and the data. In
Master/Slave architecture, Slave can never initiate communication. Each Slave has
its unique address and receives only the packets containing that particular address.
It is programmer's responsibility to ensure that only one device transmits data via
485 bus at a time.

Address 50 is a common address for all Slave devices: packets containing address
50 will be received by all Slaves. The only exceptions are Slaves with addresses
150 and 169, which require their particular address to be specified in the packet.

RS485 routines require USART module on port C. Pins of USART need to be
attached to RS485 interface transceiver, such as LTC485 or similar. Pins of trans-
ceiver (Receiver Output Enable and Driver Outputs Enable) should be connected
to port C, pin 2 (see the figure at end of the chapter).

Following routines implement flexible protocol for RS485 system with
Master/Slave architecture:

RS485 Library

sub procedure RS485master_init

sub procedure RS485slave_init(dim address as byte)

sub procedure RS485master_read(dim byref data as byte[5])

sub procedure RS485master_write(dim byref data as byte[2],
dim datalen as byte, dim address as byte)

sub procedure RS485slave_read(dim byref data as byte[5])

sub procedure RS485slave_write(dim byref data as byte[2],
dim datalen as byte)

Routines

Note

sub procedure RS485master_init

USART needs to be initialized (USART_init)

None

Initializes MCU as Master in RS485 communication

sub procedure RS485slave_init(dim address as byte)

USART needs to be initialized (USART_init)

Slave address can take any value between 0 and 255, except 50 which is a com-
mon address for all slaves

Initializes MCU as Slave in RS485 communication

sub procedure RS485master_read(dim byref data as byte[5])

MCU must be initialized as Master to assign an address to MCU.

dim byref data as byte[5]

Master receives any message sent by Slaves. As messages are multi-byte, this pro-
cedure must be called for each byte received. Upon receiving a message, buffer is
filled with the following values:

data[0..2] is data; data[3] is the number of received bytes (1..3); data[4] is set to
255 (TRUE) when message is received; data[5] is set to 255 (TRUE) if an error
has occurred; data[6] is the address of the Slave which sent the message

Procedure automatically sets data[4] and data[5] upon every received
message.These flags need to be cleared repeatedly from the program.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

166

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

RS485master_init

Prototype:

Parameters:

Effects:

Precondition:

RS485slave_init

Prototype:

Parameters:

Effects:

Precondition:

RS485master_read

Prototype:

Parameters:

Effects:

Precondition:

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

167
page

sub procedure RS485master_write(dim byref data as byte[2],

dim datalen as byte, dim address as byte)

MCU must be initialized as Master in 485 communication. It is programmer's
responsibility to ensure (by protocol) that only one device sends data via 485 bus
at a time.

dim byref data as byte[2], dim datalen as byte

Sends number of bytes (1 < datalen <= 3) from buffer via 485.

sub procedure RS485slave_read(dim byref data as byte[5])

MCU must be initialized as Slave in 485 communication.

dim byref data as byte[5]

Only messages that appropriately address Slaves will be received. As messages are
multi-byte, this procedure must be called for each byte received (see the example
at the end of the chapter). Upon receiving a message, buffer is filled with the fol-
lowing values:

data[0..2] is data; data[3] is number of bytes received (1..3) ; data[4] is set to
255(TRUE) when message is received; data[5] is set to 255(TRUE) if an error has
occurred; rest of the buffer is undefined

Procedure automatically sets data[4] and data[5] upon every received message.
These flags need to be cleared repeatedly from the program.

RS485master_write

Prototype:

Parameters:

Effects:

Precondition:

RS485slave_read

Prototype:

Parameters:

Effects:

Precondition:

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

168

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

sub procedure RS485slave_write(dim byref data as byte[2],

dim datalen as byte)

MCU must be initialized as Slave in 485 communication.

dim byref data as byte[2], dim datalen as byte

Sends number of bytes (1 < datalen <= 3) from buffer via 485

RS485slave_write

Prototype:

Parameters:

Effects:

Precondition:

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

program pr485

dim dat as byte[8] ' buffer for receiving/sending messages
dim i as byte
dim j as byte

sub procedure interrupt
if TestBit(RCSTA,OERR) = 1 then

portd = $81
end if

RS485slave_receive(dat) ' every byte is received by
end sub ' RS485slave_read(dat);

' upon receiving a msg with no errors
main: ' data[4] is set to 255

trisb = 0
trisd = 0
USART_init(9600) ' initialize usart module
RS485slave_init(160) ' init. MCU as Slave with address 160
SetBit(PIE1,RCIE) ' enable interrupt
SetBit(INTCON,PEIE) ' on byte received
ClearBit(PIE2,TXIE) ' via USART (RS485)
SetBit(INTCON,GIE)
portb = 0
portd = 0 ' ensure that message received flag is 0
dat[4] = 0 ' ensure that error flag is 0
dat[5] = 0
while true

if dat[5] then
portd = $aa ' if there is error, set portd to $aa

end if
if dat[4] then ' if message received
dat[4] = 0 ' clear message received flag

j = dat[3] ' number of data bytes received
for i = 1 to j

portb = dat[i-1] ' output received data bytes
next i
dat[0] = dat[0] + 1 ' increment received dat[0]
RS485slave_send(dat,1) ' send it back to Master

end if
wend

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

169
page

Example

Figure: Example of interfacing PC to PIC MCU via RS485 bus

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

170

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

+

+

MAX232

C1+

V+

C1-

C2+

C2-

V-

T2out

R2in R2out

T2in

T1in

R1out

R1in

T1out

GND

Vcc
+

+

RX

TX

RTS

GND

+5V

RS232 to RS485 converter

Shielded pair
less than 300m

long

LTC485

R0

DE

DI GND

A

B

Vcc

RE

LTC485

R0

DE

DI GND

A

B

Vcc

RE

4
M

H
z

+5V

+5V

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

Connecting PC and PIC via

RS485 communication line

Up to 32 devices can
be connected to

RS485 line

4
.7

u
F

4
.7

u
F

4
.7

u
F

4.7uF

R
e
s
e
t

1
0
K

1
0
K

6
2
0
R

6
2
0
R

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

SPI (Serial Peripheral Interface) module is available with a number of PIC MCU
models. Set of library procedures and functions is listed below to provide initial-
ization of slave mode and comfortable work with the master mode.

You can easily communicate with other devices via SPI - A/D converters, D/A
converters, MAX7219, LTC1290 etc. You need PIC MCU with hardware integrat-
ed SPI (for example, PIC16F877). Then, simply use the following functions and
procedures.

Note that these functions support module on PORTB or PORTC, and won't work
with modules on other ports. Examples for PIC MCUs with module on other ports
can be found in your mikroBasic installation folder, subfolder 'examples'.

You can use procedure SPI_init without parameters and get the default result:

Master mode, clock Fosc/4, clock idle state low, data transmitted on low to high
edge, input data sampled at the middle of interval;

For advanced settings, configure and initialize SPI using the procedure:

sub procedure SPI_Init_advanced(dim Master as byte,
dim Data_Sample as byte, dim Clock_Idle as byte,
dim Low_To_High as byte)

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

171
page

SPI Library

Note

sub procedure SPI_init
sub procedure SPI_write(dim Data as byte)
sub function SPI_read(dim Buffer as byte) as byte
sub procedure SPI_Init_advanced(dim Master as byte,
dim Data_Sample as byte, dim Clock_Idle as byte,dim Low_To_High as byte)

Routines

Initialization

Example:

SPI_init(Master_OSC_div4, Data_SAMPLE_MIDDLE,LK_Idle_LOW,LOW_2_HIGH)

This will set SPI to master mode, clock = Fosc/4, data sampled at the middle of
interval, clock idle state low and data transmitted at low to high edge.

Parameter mast_slav determines the work mode for SPI; can have the following
values:

Parameter Data_sample determines when data is sampled. It can have the follow-
ing values:

Parameter clk_idl determines idle state for clock; can have the following values:

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

172

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Parameters

Value Meaning

Master_OSC_div4 Master clock=Fosc/4

Master_OSC_div16 Master clock=Fosc/16

Master_OSC_div64 Master clock=Fosc/64

Master_TMR2 Master clock source TMR2

Slave_SS_ENABLE Master slave select enabled

Slave_SS_DIS Master slave select disabled

Value Meaning

Data_SAMPLE_MIDDLE Input data sampled in middle of interval

Data_SAMPLE_END Input data sampled at end of interval

Value Meaning

CLK_Idle_HIGH Clock idle HIGH

CLK_Idle_LOW Clock idle LOW

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Parameter lth_htl determines transmit edge for data. It can have the following val-
ues:

In order to keep this working, you shouldn't override the settings made by the pro-
cedures spi_init or spi_init_ordinary as it uses some of the PIC MCU resources.

Pins RC3, RC4, RC5 are configured as needed (don't change TRISC settings for
these pins - procedure will set them automatically).

The following routines are provided for comfortable use of master mode :

sub procedure SPI_write(dim Data as byte)

Write byte b to SSPBUF, and immediately starts the transmission.

sub function SPI_read(dim Buffer as byte)

Provide clock by sending data (byte b) and read the received data at the end of the
period.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

173
page

Note

Read and
Write

Value Meaning

LOW_2_HIGH Data transmit on low to high edge

HIGH_2_LOW Data transmit on high to low edge

The folowing code demonstrates how to use SPI library procedures and functions.
Same example along with m7219.pbas file is given in folder ../mikroBasic/exam-
ples. Assumed HW configuration is: max7219 (chip select pin) is connected to
RC1, and SDO, SDI, SCK pins are connected to corresponding pins of max7219.

program SPI

include "m7219.pbas"

dim i as byte

main:
SPI_init ' standard configuration
TRISC = TRISC and $Fd
max7219_init ' initialize max7219
PORTC.1 = 0 ' select max7219
SPI_write(1) ' send address (1) to max7219
SPI_write(7) ' send data (7) to max7219
PORTC.1 = 0 ' deselect max7219s

end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

174

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Figure: Example of interfacing MAX7219 with PIC MCU via SPI

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

175
page

M
A

X
7
2
1
9

D
O

U
T

S
E

G
D

S
E

G
D

P

S
E

G
E

S
E

G
C

IS
E

T

S
E

G
G

S
E

G
B

S
E

G
F

D
IN

D
IG

0

D
IG

4

G
N

D

D
IG

6

D
IG

2

D
IG

7

D
IG

3

G
N

D

D
IG

5

V
+

D
IG

1

L
O

A
D

S
E

G
A

C
L

K

4MHz

+
5

V

8
.8

.8
.8

.
8

.8
.8

.
8

.

P
IC

1
6
F
8
7
7
A

R
A

0
/A

N
0

R
A

2
/A

N
2

/V
re

f-

R
A

3
/A

N
3

/V
re

f+

R
A

4
/T

O
C

K
I

R
A

5
/A

N
4

R
E

0
/R

D
/A

N
5

R
E

1
/W

R
/A

N
6

R
E

2
/C

S
/A

N
7

V
d

d

V
s
s

O
S

C
1

O
S

C
2

R
C

O
/T

1
O

S
O

R
C

1
/T

1
O

S
I

R
C

3

R
D

0
/P

S
P

0

R
D

1
/P

S
P

1

M
C

L
R

/V
p

p
/T

H
V

R
C

2
/C

C
P

1

R
A

1
/A

N
1

R
B

7
/P

G
D

R
B

6
/P

G
C

R
B

5

R
B

4

R
B

3
/P

G
M

R
B

2

R
B

1

R
B

0
/IN

T

V
d

d

V
s
s

R
D

6
/P

S
P

6

R
D

7
/P

S
P

7

R
D

5
/P

S
P

5

R
D

4
/P

S
P

4

R
C

7
/R

X
/D

T

R
C

6
/T

X
/C

K

R
C

5

R
C

4

R
D

3
/P

S
P

3

R
D

2
/P

S
P

2

+
5

V

8 g

a

b

c

d

f
g

d
p

e

f
K

a
bc

d
p

K
d

e

Reset

10K

1
0
K

USART (Universal Synchronous Asynchronous Receiver Transmitter) hardware
module is available with a number of PIC MCU models. Set of library procedures
and functions is listed below to provide comfortable work with the Asynchronous
(full duplex) mode.

You can easily communicate with other devices via RS232 protocol (for example
with PC, see the figure at the end of this chapter - RS232 HW connection). You
need a PIC MCU with hardware integrated USART (for example, PIC16F877).
Then, simply use the functions and procedures described below.

Note that these functions and procedures support module on PORTB, PORTC or
PORTG, and won't work with modules on other ports. Examples for PIC MCUs
with module on other ports can be found in your mikroBasic installation folder,
subfolder 'examples'.

sub procedure USART_Init(const Baud_Rate)
sub function USART_Data_Ready as byte
sub function USART_Read as byte
sub procedure USART_Write(dim Data as byte)

Certain PIC MCU models with two USART modules, such as P18F8520, require
you to specify the module you want to use. Simply append the number 1 or 2 to
procedure or function name - for example, USART_Write2(dim Data as byte).

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

176

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

USART Library

Note

Routines

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

sub procedure USART_Init(const Baud_Rate)

Parameter Baud_rate is the desired baud rate;

Example:

USART_init(2400)

This will initialize PIC MCU USART hardware and establish the communication
at baud rate of 2400.

Refer to the device data sheet for baud rates allowed for specific Fosc. If you
specify the unsupported baud rate, compiler will report an error.

In order to keep this working, you should not override settings made by the proce-
dure USART_init as it uses some of the PIC MCU resources. (For example: pins
RC7, RC6 configured as input, output respectively; do not change TRISC settings
for this pins - procedure will set them automatically). Check the figure on the fol-
lowing page.

Following routines can be used after the communication has been established:

sub function USART_Data_Ready as byte

Returns 1 if data is ready; returns 0 if there is no data.

sub function USART_Read as byte

Receive a byte; if byte is not received return 0.

sub procedure USART_Write(dim Data as byte)

Transmit a byte.

The following code demonstrates how to use USART library procedures and func-
tions. When PIC MCU receives data via rs232 it immediately sends the same data
back. If PIC MCU is connected to the PC (see figure below), you can test it using
mikroBasic terminal for RS232 communication, menu choice Tools > Terminal.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

177
page

Example

program RS232com

dim Received_byte as byte

main:
USART_init(2400) ' initialize USART module
while true

if USART_data_ready = 1 then ' if data is received
Received_byte = USART_read ' read received data,
USART_write(Received_byte) ' send data via USART

end if
wend

end.

Figure: RS232 HW connection

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

178

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

SUB-D 9-pin connector

+

+

+

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

serial cable

(1 to 1)

Receive data (Rx)

Send data (Tx)

+

MAX232

C1+

V+

C1-

C2+

C2-

V-

T2out

R2in R2out

T2in

T1in

R1out

R1in

T1out

GN
D

Vcc

+5V

4
.7

u
F

4.7uF

4
.7

u
F

4
.7

u
F

4MHz

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

1
0

K
R

e
s
e

t

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

mikroBasic provides routines which implement software I2C. These routines are
hardware independent and can be used with any MCU. Software I2C enables you
to use MCU as Master in I2C communication. Multi-master mode is not support-
ed. Note that these functions and procedures implement time-based activities, so
the interrupts must be disabled when using them.

I2C interface is serial interface used for communicating with peripheral or other
microcontroller devices. Routines below are intended for PIC MCUs with MSSP
module. By using these, you can configure and use PIC MCU as master in I2C
communication.

sub procedure Soft_I2C_Config(dim byref Port as byte, const SDA,

const SCL, const clock)

Parameter <Port> specifies port of MCU on which SDA and SCL pins will be
located; parameters <SCL> and <SDA> need to be in range 0..7 and cannot point
at the same pin.

sub procedure Soft_I2C_Start

Issues START condition.

sub function Soft_I2C_Write(dim Data as byte) as byte

After you have issued a start or repeated start you can send data byte via I2C bus;
this function also returns 0 if there are no errors.

sub function Soft_I2C_Read(dim Ack as byte) as byte

Receive 1 byte from the slave; and sends not acknowledge signal if parameter Ack
is 0 in all other cases it sends acknowledge.

sub procedure Soft_I2C_Stop

Issues STOP condition.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

179
page

Software I2C

Routines

This code demonstrates use of software I2C routines. PIC MCU is connected
(SCL,SDA pins) to 24c02 EEPROM. Program sends data to EEPROM (data is
written at address 2). Then, we read data via I2C from EEPROM and send its
value to PORTC, to check if the cycle was successful.

program soft_I2C_test

dim EE_adr as byte
dim EE_data as byte
dim jj as word

main:
Soft_I2C_config(PORTD,3,4) ' initialize full master mode
TRISC = 0 ' portc is output
PORTC = $ff ' initialize portc
Soft_I2C_Start ' I2C start signal
Soft_I2C_Write($a2) ' send byte via I2C
EE_adr = 2
Soft_I2C_Write(EE_adr) ' send byte(address for EEPROM)
EE_data = $aa
Soft_I2C_Write(EE_data) ' send data (data to be written)
Soft_I2C_Stop ' I2C stop signal

for jj = 0 to 65500 ' pause while EEPROM writes data
nop

next jj

Soft_I2C_Start ' issue I2C start signal
Soft_I2C_Write($a2) ' send byte via I2C
EE_adr = 2
Soft_I2C_Write(EE_adr) ' send byte (address for EEPROM)
Soft_I2C_Start ' I2C signal repeated start
Soft_I2C_Write($a3) ' send byte (request data)
EE_data = Soft_I2C_Read(0) ' read the data
Soft_I2C_Stop ' I2C_stop signal
PORTC = EE_data ' show data on PORTD

noend: ' endless loop
goto noend

end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

180

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

mikroBasic provides routines which implement software SPI. These routines are
hardware independent and can be used with any MCU.

Note that these functions and procedures implement time-based activities, so the
interrupts need to be disabled when using them.

sub procedure Soft_SPI_Config(dim byref Port as byte,
const SDI, const SD0, const SCK)

sub procedure Soft_SPI_Init(dim byref Port as byte)
sub procedure Soft_SPI_Write(dim Data as byte)
sub function Soft_SPI_Read(dim Buffer as byte) as byte

Configure and initialize SPI using the procedure Soft_SPI_Config.Example:

Soft_SPI_Config(PORTB,1,2,3)

This will set SPI to master mode, clock = 50kHz, data sampled at the middle of
interval, clock idle state low and data transmitted at low to high edge. SDI pin is
RB1, SDO pin is RB2 and SCK pin is RB3.

Parameter <Port> specifies port of MCU on which SDI,SDO and SCK pins will
be located; parameters <SDI>, <SDO> and <SCK> need to be in range 0..7 and
cannot point at the same pin;

In order to keep this working, you shouldn't override the settings made by the pro-
cedures soft_spi_config as it uses some of the PIC MCU resources. Specified pins
SDI,SDO and SCK are configured as needed (don't change TRISX settings for
these pins - procedure will set them automatically).

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

181
page

Software SPI

Routines

Note

The following functions are provided for comfortable use of master mode:

sub procedure Soft_SPI_Write(dim Data as byte)

Immediately transmit byte Data.

sub function Soft_SPI_Read(dim Buffer as byte) as byte

Provide clock by sending data (byte Buffer) and return the received data.

This code demonstrates how to use Software SPI procedures and functions.
Assumed HW configuration is: max7219 (chip select pin) is connected to RD1,
and SDO, SDI, SCK pins are connected to corresponding pins of max7219.

program Soft_SPI_test

include "m7219.pbas"

dim i as byte

main:
Soft_SPI_Config(portd,4,5,3) ' standard configuration
TRISC = TRISC and $Fd
max7219_init ' initialize max7219
PORTD.1 = 0 ' select max7219
Soft_SPI_Write(1) ' send address to max7219
Soft_SPI_Write(7) ' send data to max7219
PORTD.1 = 0 ' deselect max7219

end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

182

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

mikroBasic provides routines which implement software UART. These routines
are hardware independent and can be used with any MCU. You can easily commu-
nicate with other devices via RS232 protocol. Simply use the functions and proce-
dures described below.

Note that these functions and procedures implement time-based activities, so the
interrupts need to be disabled when using them.

sub procedure Soft_UART_Init(dim byref Port as byte,
const RX, const TX, const Baud_Rate)

sub function Soft_UART_Read(dim byref Msg_received as byte) as byte

sub procedure Soft_UART_Write(dim Data as byte)

Parameter <Port> specifies port of MCU on which RX and TX pins are located
(RX and TX have to be on the same port, obviously); parameters <RX> and <TX>
need to be in range 0..7 and cannot point the same pin; <Baud_Rate> is the
desired baud rate.

Example:

Soft_UART_Init(portb, 1, 2, 9600)

This will initialize software UART and establish the communication at baud rate
of 9600. Maximum baud rate depends on PIC MCU clock and working conditions.

In order to keep this working, you should not override settings made by the proce-
dure Soft_UART_Init as it uses some of PIC resources. (the example above con-
figures pins RB1 and as input; do not change TRISB settings for these pins - pro-
cedure will set them automatically).

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

183
page

Software UART

Routines

Note

Following functions can be used after the communication has been established:

sub function Soft_UART_Read(dim byref Msg_received as byte) as byte

Function returns a received byte; parameter <Msg_received> will take true if
transfer was succesful. Soft_UART_Read is a non-blocking function call, so you
should test <Msg_received> manually (check the example below).

sub procedure Soft_UART_Write(dim Data as byte)

Procedure transmits a byte.

This code demonstrates how to use software UART procedures and functions.
When PIC MCU receives data via RS232 it immediately sends the same data
back. If PIC MCU is connected to the PC, you can test it using the mikroBasic ter-
minal for RS232 communication, menu choice Tools > Terminal.

Be aware that during transmission, software UART is incapable of receiving data -
data transfer protocol must be set in such a way to prevent loss of information.

program soft_UART_test

dim Received_byte as byte
dim Rec_ok as byte

main:
Soft_UART_init(PORTB,1,2,2400) ' initialize software UART
while true

do
' read received data, loop until Rec_ok
Received_byte = Soft_UART_read(Rec_ok)

' send data via UART
Soft_UART_write(Received_byte)

wend
end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

184

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

This library provides routines for accessing microcontroller Flash memory. Note
that routines differ for PIC16 and PIC18 families.

For PIC18:

procedure Flash_Write(dim Address as longint,
dim byref Data as byte[64])

function Flash_Read(dim Address as longint) as byte

For PIC16:

procedure Flash_Write(dim Address as word, dim Data as word)
function Flash_Read(dim Address as word) as word

Procedure FlashWrite writes chunk of data to Flash memory (for PIC18, data
needs to exactly 64 bytes in size).

Procedure FlashRead reads data from the specified <Address>.

Keep in mind that this function erases target memory before writing <Data> to it.
This means that if write was unsuccessful, your previous data will be lost.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

185
page

Flash Memory Library

Routines

Important

Demonstration of Flash Memory Library for PIC18:

program flash_pic18

const FLASH_ERROR = $FF
const FLASH_OK = $AA

dim toRead as byte
dim i as byte
dim toWrite as byte[64]

main:
TRISB = 0 ' PORTB is output
for i = 0 to 63 ' initialize array

toWrite[i] = i
next i

' write contents of the array to the address 0x0D00
Flash_Write($0D00, toWrite)

' verify write
PORTB = 0 ' turn off PORTB
toRead = FLASH_ERROR ' initialize error state

for i = 0 to 63

' read 64 consecutive locations starting from 0x0D00
toRead = Flash_Read($0D00 + i)

if toRead <> toWrite[i] then ' stop on first error
PORTB = FLASH_ERROR ' indicate error
Delay_ms(500)

else
PORTB = FLASH_OK ' indicate no error

end if

next i

end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

186

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Demonstration of Flash Memory Library for PIC16:

program flash_pic16_test

const FLASH_ERROR = $FF
const FLASH_OK = $AA

dim toRead as word
dim i as word

main:
TRISB = 0 ' PORTB is output
for i = 0 to 63

' write the value of i starting from the address 0x0A00
Flash_Write(i + $0A00, i)

next i

' verify write
PORTB = 0 ' turn off PORTB
toRead = FLASH_ERROR ' initialize error state

for i = 0 to 63

' Read 64 consecutive locations starting from 0x0A00
toRead = Flash_Read($0A00 + i)

if toRead <> i then ' Stop on first error

' i contains the address of the erroneous location
i = i + $0A00
PORTB = FLASH_ERROR ' indicate error
Delay_ms(500)

else
PORTB = FLASH_OK ' indicate no error

end if

next i

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

187
page

mikroBasic provides a set of library procedures and functions for handling
Manchester coded signal.

Manchester code is a code in which data and clock signals are combined to form a
single self-synchronizing data stream; each encoded bit contains a transition at the
midpoint of a bit period, the direction of transition determines whether the bit is a
"0" or a "1"; second half is the true bit value and the first half is the complement
of the true bit value (as shown in the figure below).

Manchester receive routines are blocking calls (Man_Receive_Config,
Man_Receive_Init, Man_Receive). This means that PIC will wait until the task
is performed (e.g. byte is received, synchronization achieved, etc.)

Routines for receiving are limited to a baud rate scope from 340 ~ 560 bps.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

188

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Manchester Code Library

1 0

Manchester RF_Send_Byte format

Bi-phase coding

0 0 0 0 0 011 1 1 1

Example of transmission

St1 St2 Ctr B7 B6 B5 B4 B3 B2 B1 B0

2.4ms

Note

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

sub procedure Man_Receive_Config(dim byref port as byte, dim rxpin as byte)

This procedure needs to be called in order to receive signal by procedure
Man_Receive. You need to specify the port and rxpin of input signal. In case of
multiple errors on reception, you should call Man_Receive_Init once again to
enable synchronization.

sub procedure Man_Receive_Init(dim byref port as byte)

Procedure works same as Man_Receive_Config, with default pin setting (pin 6).

sub function Man_Receive(dim byref error as byte) as byte

Function extracts one byte from signal. If format does not match the expected,
<error> flag will be set True.

sub procedure Man_Send_Config(dim byref port as byte, dim txpin as byte)

Procedure needs to be called in order to send signals via procedure Man_Send.
Procedure specifies <port> and <txpin> for outgoing signal (const baud rate).

sub procedure Man_Send_Init(dim byref port as byte)

Procedure works same as Man_Send_Config, but with default pin setting (pin 0).

sub procedure Man_Send(dim data as byte)

This procedure sends one <data> byte.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

189
page

Routines sub procedure Man_Receive_Config(dim byref port as byte, dim rxpin as byte)
sub procedure Man_Receive_Init(dim byref port as byte)
sub function Man_Receive(dim byref error as byte) as byte
sub procedure Man_Send_Config(dim byref port as byte, dim txpin as byte)
sub procedure Man_Send_Init(dim byref port as byte)
sub procedure Man_Send(dim data as byte)

Following code receives message in Manchester code:

program RRX

dim ErrorFlag as byte
dim ErrorCount as byte
dim IdleCount as byte
dim temp as byte
dim LetterCount as byte

main:
errorCount = 0
TRISC = 0 ' errorFlag indicator
PORTC = 0
Man_Receive_Init(PORTD) ' Synchronize receiver
LCD_Init(PORTB) ' Initialize LCD on PORTB

while true
do ' endless loop

IdleCount = 0 ' Reset idle counter
temp = Man_Receive(ErrorFlag) ' Attempt byte receive
if errorFlag then

inc(errorCount)
else

PORTC = 0
end if
if errorCount > 20 then ' If too many errorFlags

' try to synchronize the receiver again
errorCount = 0
PORTC = $AA ' Indicate errorFlag
Man_Receive_Init(PORTD) ' Synchronize receiver

end if
inc(IdleCount)
if IdleCount > 18 then

' If nothing is received after some time
' try to synchronize again

IdleCount = 0
Man_Receive_Init(PORTD) ' Synchronize receiver

end if
loop until temp = $0B ' End of message marker

' continues..

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

190

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

' ..continued

' If no errorFlag then write the message

if errorFlag = false then
LCD_Cmd(LCD_CLEAR)
LetterCount = 0
while LetterCount < 17 ' Message is 16 chars long

inc(LetterCount)
temp = Man_Receive(errorFlag)
if errorFlag = false then

LCD_Chr_CP(temp)
else

inc(errorCount)
nop

end if
wend

temp = Man_Receive(errorFlag)
if temp <> $0E then

inc(errorCount)
end if

end if
wend

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

191
page

Following code sends message in Manchester code:

program RF_TX

dim i as byte
dim s1 as string[20]

main:
PORTB = 0 ' Initialize port
TRISB = %00001110
ClearBit(INTCON, GIE) ' Disable interrupts
Man_Send_Init(PORTB) ' Initialize manchester sender
while TRUE

Man_Send($0B) ' Send start marker
Delay_ms(100) ' Wait for a while
s1 = "mikroElektronika"
for i = 1 to Length(s1)

Man_Send(s1[i]) ' Send char
Delay_ms(90)

next i
Man_Send($0E) ' Send end marker
Delay_ms(1000)

wend
end.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

192

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

Figure: simple Transmitter and Receiver connection.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

193
page

4MHz

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

1
0

K

R
e

s
e

t

R T 4

Vcc

I n A

GND

Antenna

Transmitter RF Module

+5V

4MHz

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

1
0

K

R
e

s
e

tR R 3

Receiver RF Module

Antenna

+5V

Numeric formatting routines convert byte, short, word, and integer to string, and
can also convert decimal values to BCD and vice versa.

You can get text representation of numerical value by passing it to one of the rou-
tines listed below:

Parameter input represents numerical value of that should be converted to string;
parameter txt is passed by address and it contains the result of conversion. All four
procedures behave in similar fashion for appropriate input data type. (Parameter
txt has to be of sufficient size to fit the converted string.)

Following routines convert decimal values to BCD (Binary Coded Decimal) and
vice versa:

sub function Bcd2Dec(dim bcd_num as byte) as byte
sub function Dec2Bcd(dim dec_num as byte) as byte
sub function Bcd2Dec16(dim bcd_num as word) as word
sub function Dec2Bcd16(dim dec_num as word) as word

For instance, function Bcd2Dec converts 8-bit BCD numeral bcd_num to its deci-
mal equivalent and returns the result as byte. Simple example:

..
dim a as byte
dim b as byte
begin

a = 140
b = Bcd2Dec(a) ' b equals 224 now

end.The following code demonstrates use of library procedure ShortToStr.
Example prints the converted value to LCD display.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

194

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Numeric Formatting Routines

Routines

sub procedure ByteToStr(dim input as byte, dim byref txt as char[6])
sub procedure WordToStr(dim input as word, dim byref txt as char[6])
sub procedure ShortToStr(dim input as short, dim byref txt as char[6])
sub procedure IntToStr(dim input as integer, dim byref txt as char[6])

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

This code demonstrates use of library procedure ShortToStr. Example prints the
converted value to LCD display.

program num_format_test

dim txt as char[20]
dim i as short

main:
PORTB = 0 ' initial value for portb
TRISB = 0 ' designate portb as output
LCD_Init(PORTB) ' initialize LCD on portb
LCD_Cmd(LCD_CLEAR) ' send command 'clear display'
LCD_Cmd(LCD_CURSOR_OFF) ' send command 'cursor off'
txt = "mikroElektronika" ' assign text

LCD_Out(1,1,txt) ' print txt, 1st row, 1st col
Delay_ms(1000)

txt = "testing.." ' write string to txt
LCD_Out(2,1,txt)
Delay_ms(1000)

' print txt, 2nd row, 1st col
LCD_Cmd(LCD_CLEAR)
for i = 127 to -111 step -1

ShortToStr(i,txt) ' convert variable i to string
LCD_Out(2,1,txt) ' print i (string value)
Delay_ms(100)
LCD_Cmd(LCD_CLEAR)

next i
LCD_Out(1,1,"The End")

end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

195
page

Example

Trigonometric functions take an angle (in degrees) as parameter of type word and
return sine and cosine multiplied by 1000 and rounded up (as integer).

Functions implemented in the library are:

sub function sinE3(dim Angle as word) as integer

sub function cosE3(dim Angle as word) as integer

Functions take a word-type number which represents angle in degrees and return
the sine of <Angle> as integer, multiplied by 1000 (1E3) and rounded up to near-
est integer:

result = round_up(sin(Angle)*1000)

Thus, the range of the return values for these functions is from -1000 to 1000.

For example:

dim angle as word
dim result as integer

angle = 45;
result = sinE3(angle) ' result is 707

Parameter <Angle> cannot be negative.

These functions are implemented as lookup tables. The maximum error obtained is
±1.

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

196

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Trigonometry Library

Routines

Note

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

The example demonstrates use of library functions sinE3 and cosE3. Example
prints the deg, sine and cosine angle values on LCD display. The angle parameter
can be altered by pushbuttons on PORTC.0 and PORTC.1.

program TestTrigon

dim angle as word
dim txtNum as char[6]
dim res as integer

main:
TRISB = 0
TRISC = $FF
LCD_Init(PORTB)
LCD_Cmd(LCD_CURSOR_OFF)

angle = 45
LCD_Out(1,1,"deg")
LCD_Out(1,6,"sin")
LCD_Out(1,12,"cos")

while True
LCD_Out(2,1," ")
if (Button(PORTC, 0, 1, 1)=True) and (angle < 1000) then

inc(angle)
end if
if (Button(PORTC, 1, 1, 1)=True) and (angle > 0) then

dec(angle)
end if

WordToStr(angle,txtNum) ' convert angle to text
LCD_Out(2,1,txtNum)
res = sinE3(angle)
IntToStr(res, txtNum) ' convert 1000*sin(angle) to text
LCD_Out(2,6,txtNum)

res = cosE3(angle)
IntToStr(res, txtNum) ' convert 1000*cos(angle) to text
LCD_Out(2,12,txtNum)
Delay_ms(100)

wend
end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

197
page

Example

mikroBasic provides a sound library which allows you to use sound signalization
in your applications.

sub procedure Sound_Init(dim byref Port as byte, Pin as byte)
sub procedure Sound_Play(dim Period as byte,

dim Num_Of_Periods as word)

Procedure Sound_Init initializes sound engine at specified <Port> and <Pin>.
Parameter <Pin> needs to be within range 0..7.

Procedure Sound_Play plays the sound at the specified port pin. <Period_div_10>
is a sound period given in MCU cycles divided by ten, and generated sound lasts
for a specified number of periods (<Num_of_Periods>).

For example, if you want to play sound of 1KHz: T = 1/f = 1ms = 1000 cycles @
4MHz. This gives us our first parameter: 1000/10 = 100. We'll play 150 periods
like this:

Sound_Play(100, 150)

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

198

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

Sound Library

Routines

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

This is a simple demonstration of how to use sound library for playing tones on a
piezo speaker. The code can be used with any MCU that has PORTB and ADC on
PORTA. Sound frequencies in this example are generated by reading the value
from ADC and using the lower byte of the result as base for T (f = 1/T).

program SoundADC

dim adcValue as byte

begin
PORTB = 0 ' Clear PORTB
TRISB = 0 ' PORTB is output
INTCON = 0 ' Disable all interrupts
ADCON1 = $82 ' Configure VDD as Vref,

' and analog channels
TRISA = $FF ' PORTA is input

Sound_Init(PORTB,2) ' Initialize sound on PORTB.RB2
while true

adcValue = ADC_Read(2) ' Get lower byte from ADC
Sound_Play(adcValue, 200) ' Play the sound

wend
end.

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

199
page

Example

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

200

mikroBASIC

MikroElektronika: Development tools - Books - Compilers

making it simple...

page

mikroBasic provides a set of procedures and functions for faster development of
your applications.

sub function Button(dim byref PORT as byte, dim PIN as byte,

dim Time as byte, dim Astate as byte) as byte

The Button function eliminates the influence of contact flickering due to the press-
ing of a button (debouncing).

Parameters PORT and PIN specify the location of the button; parameter Time rep-
resents the minimum time interval that pin must be in active state in order to
return one; parameter Astate can be only zero or one, and it specifies if button is
active on logical zero or logical one.

This code demonstrates use of library function Button. Example reads the state on
PORTB, pin 0, to which the button is connected. On transition from logical 1 to
logical 0 which corresponds to release of a button, value on PORTD is inverted.

program test

dim byref oldstate as byte

main:
PORTD = 255
TRISD = 0
TRISB = 255
while true

if Button(PORTB, 0, 1, 1) then
oldstate = 255

end if

if oldstate and Button(PORTB, 0, 1, 0) then
portD = 0
oldstate = 0

end if
wend

end.

Utilities

Example

Routines

mikroBASIC - Basic Compiler for Microchip PIC microcontrollers

MikroElektronika: Development tools - Books - Compilers

mikroBASIC
making it simple...

201
page

If you are experiencing problems with any of our products or you just want addi-
tional information, please let us know.

Technical Support for compiler

If you are experiencing any trouble with mikroBasic, please do not hesitate to
contact us - it is in our mutual interest to solve these issues.

Discount for schools and universities

MikroElektronika offers a special discount for educational institutions. If you
would like to purchase mikroBasic for purely educational purposes, please con-
tact us.

Problems with transport or delivery

If you want to report a delay in delivery or any other problem concerning distri-
bution of our products, please use the link given below.

Would you like to become mikroElektronika's distributor?

We in mikroElektronika are looking forward to new partnerships. If you would
like to help us by becoming distributor of our products, please let us know.

Other

If you have any other question, comment or a business proposal, please contact
us:

MikroElektronika magazine
Admirala Geprata 1B
11000 Belgrade
EUROPE

Phone: + 381 (11) 30 66 377, + 381 (11) 30 66 378
Fax: + 381 (11) 30 66 379
E-mail: office@mikroelektronika.co.yu
Web: www.mikroelektronika.co.yu

Contact us:

	Table of Contents
	Disclaimer
	Licence Agreement
	Contact Us
	Chapter 1: mikroBasic IDE
	Quick Overview
	Code Editor
	Code Explorer
	Creating First Project
	Projects
	Managing Source Files
	Compile Source Code

	Debugger
	Error Window
	Assembly View
	Statistics
	Integrated Tools
	USART Terminal
	ASCII Chart
	7 Segment Display Decoder
	EEPROM Editor

	Keyboard Shortcuts

	Chapter 2: mikroBasic Reference
	Identifiers
	Keywords
	Data Types
	Numerals and Character Strings
	Constants
	Array Constants
	Symbols
	Variables
	Comments
	Expressions
	Declarations and Statements
	Directives
	Procedures and Functions
	Modules
	Scope Identifier (Visibility)
	Program Organization
	Type Conversion
	Assignment and Implicit Conversion
	Implicit Conversion and Legal Expressions
	Operators
	Arithmetic Operators
	Boolean Operators
	Logical (Bitwise) Operators
	Relation (Comparison) Operators

	Conditional Statements
	Labels and Goto
	Select Case Statements
	If Statement

	Loops
	For Statement
	Do..Loop Until Statement
	While Statement

	ASM Statement
	PIC MCU Specific
	mikroBASIC Specific
	Compiler Error Messages

	Chapter 3: Built-in and Library Routines
	Built-in Routines
	Library Routines
	1-Wire Library
	ADC Library
	CAN Library
	CANSPI Library
	Compact Flash Library
	EEPROM Library
	I2C Library
	LCD Library
	LCD8 Library (8-bit Interface)
	Graphic LCD Library
	PWM Library
	RS485 Library
	SPI Library
	USART Library
	Software I2C
	Software SPI
	Software UART
	Flash Memory Library
	Manchester Code Library
	Numeric Formatting Routines
	Trigonometry Library
	Sound Library
	Utilities

